Causality-Aware Spatiotemporal Graph Neural Networks for Spatiotemporal Time Series Imputation.

Baoyu Jing, Dawei Zhou, Kan Ren, Carl Yang
{"title":"Causality-Aware Spatiotemporal Graph Neural Networks for Spatiotemporal Time Series Imputation.","authors":"Baoyu Jing, Dawei Zhou, Kan Ren, Carl Yang","doi":"10.1145/3627673.3679642","DOIUrl":null,"url":null,"abstract":"<p><p>Spatiotemporal time series are usually collected via monitoring sensors placed at different locations, which usually contain missing values due to various failures, such as mechanical damages and Internet outages. Imputing the missing values is crucial for analyzing time series. When recovering a specific data point, most existing methods consider all the information relevant to that point regardless of the cause-and-effect relationship. During data collection, it is inevitable that some unknown confounders are included, e.g., background noise in time series and non-causal shortcut edges in the constructed sensor network. These confounders could open backdoor paths and establish non-causal correlations between the input and output. Over-exploiting these non-causal correlations could cause overfitting. In this paper, we first revisit spatiotemporal time series imputation from a causal perspective and show how to block the confounders via the frontdoor adjustment. Based on the results of frontdoor adjustment, we introduce a novel Causality-Aware Spatiotemporal Graph Neural Network (Casper), which contains a novel Prompt Based Decoder (PBD) and a Spatiotemporal Causal Attention (SCA). PBD could reduce the impact of confounders and SCA could discover the sparse causal relationships among embeddings. Theoretical analysis reveals that SCA discovers causal relationships based on the values of gradients. We evaluate Casper on three real-world datasets, and the experimental results show that Casper could outperform the baselines and could effectively discover the causal relationships.</p>","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"2024 ","pages":"1027-1037"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876796/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3627673.3679642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spatiotemporal time series are usually collected via monitoring sensors placed at different locations, which usually contain missing values due to various failures, such as mechanical damages and Internet outages. Imputing the missing values is crucial for analyzing time series. When recovering a specific data point, most existing methods consider all the information relevant to that point regardless of the cause-and-effect relationship. During data collection, it is inevitable that some unknown confounders are included, e.g., background noise in time series and non-causal shortcut edges in the constructed sensor network. These confounders could open backdoor paths and establish non-causal correlations between the input and output. Over-exploiting these non-causal correlations could cause overfitting. In this paper, we first revisit spatiotemporal time series imputation from a causal perspective and show how to block the confounders via the frontdoor adjustment. Based on the results of frontdoor adjustment, we introduce a novel Causality-Aware Spatiotemporal Graph Neural Network (Casper), which contains a novel Prompt Based Decoder (PBD) and a Spatiotemporal Causal Attention (SCA). PBD could reduce the impact of confounders and SCA could discover the sparse causal relationships among embeddings. Theoretical analysis reveals that SCA discovers causal relationships based on the values of gradients. We evaluate Casper on three real-world datasets, and the experimental results show that Casper could outperform the baselines and could effectively discover the causal relationships.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信