Jing Ma, Yalin Zhang, Jingyuan Li, Yanqi Dang, Dan Hu
{"title":"Regulation of histone H3K27 methylation in inflammation and cancer.","authors":"Jing Ma, Yalin Zhang, Jingyuan Li, Yanqi Dang, Dan Hu","doi":"10.1186/s43556-025-00254-x","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammation is a multifaceted defense mechanism of the immune system against infection. Chronic inflammation is intricately linked to all stages of tumorigenesis and is therefore associated with an elevated risk of developing serious cancers. Epigenetic mechanisms have the capacity to trigger inflammation as well as facilitate tumor development and transformation within an inflammatory context. They achieve this by dynamically modulating the expression of both pro-inflammatory and anti-inflammatory cytokines, which in turn sustains chronic inflammation. The aberrant epigenetic landscape reconfigures the transcriptional programs of inflammatory and oncogenic genes. This reconfiguration is pivotal in dictating the biological functions of both tumor cells and immune cells. Aberrant histone H3 lysine 27 site (H3K27) methylation has been shown to be involved in biological behaviors such as inflammation development, tumor progression, and immune response. The establishment and maintenance of this repressive epigenetic mark is dependent on the involvement of the responsible histone modifying enzymes enhancer of zeste homologue 2 (EZH2), jumonji domain containing 3 (JMJD3) and ubiquitously transcribed tetratricopeptide repeat gene X (UTX) as well as multiple cofactors. In addition, specific pharmacological agents have been shown to modulate H3K27 methylation levels, thereby modulating inflammation and carcinogenesis. This review comprehensively summarises the current characteristics and clinical significance of epigenetic regulation of H3K27 methylation in the context of inflammatory response and tumor progression.</p>","PeriodicalId":74218,"journal":{"name":"Molecular biomedicine","volume":"6 1","pages":"14"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11882493/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43556-025-00254-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Inflammation is a multifaceted defense mechanism of the immune system against infection. Chronic inflammation is intricately linked to all stages of tumorigenesis and is therefore associated with an elevated risk of developing serious cancers. Epigenetic mechanisms have the capacity to trigger inflammation as well as facilitate tumor development and transformation within an inflammatory context. They achieve this by dynamically modulating the expression of both pro-inflammatory and anti-inflammatory cytokines, which in turn sustains chronic inflammation. The aberrant epigenetic landscape reconfigures the transcriptional programs of inflammatory and oncogenic genes. This reconfiguration is pivotal in dictating the biological functions of both tumor cells and immune cells. Aberrant histone H3 lysine 27 site (H3K27) methylation has been shown to be involved in biological behaviors such as inflammation development, tumor progression, and immune response. The establishment and maintenance of this repressive epigenetic mark is dependent on the involvement of the responsible histone modifying enzymes enhancer of zeste homologue 2 (EZH2), jumonji domain containing 3 (JMJD3) and ubiquitously transcribed tetratricopeptide repeat gene X (UTX) as well as multiple cofactors. In addition, specific pharmacological agents have been shown to modulate H3K27 methylation levels, thereby modulating inflammation and carcinogenesis. This review comprehensively summarises the current characteristics and clinical significance of epigenetic regulation of H3K27 methylation in the context of inflammatory response and tumor progression.