The Impact of Cross-Validation Schemes for EEG-Based Auditory Attention Detection with Deep Neural Networks.

Gabriel Ivucic, Saurav Pahuja, Felix Putze, Siqi Cai, Haizhou Li, Tanja Schultz
{"title":"The Impact of Cross-Validation Schemes for EEG-Based Auditory Attention Detection with Deep Neural Networks.","authors":"Gabriel Ivucic, Saurav Pahuja, Felix Putze, Siqi Cai, Haizhou Li, Tanja Schultz","doi":"10.1109/EMBC53108.2024.10782636","DOIUrl":null,"url":null,"abstract":"<p><p>This study assesses the performance of different cross-validation splits for brain-signal-based Auditory Attention Decoding (AAD) using deep neural networks on three publicly available Electroencephalography datasets. We investigate the effect of trial-specific knowledge during training and assess adaptability to diverse scenarios with a trial-independent split. Introducing a causal time-series split, and simulating online decoding, our results demonstrate a consistent performance increase for auditory attention classification. These positive outcomes provide valuable insights for the development of future brain-signal-based AAD systems, emphasizing the potential for practical, person-dependent AAD applications. The results highlight the importance of diverse evaluation methodologies for enhancing generalizability in developing effective neurofeedback systems and assistive technologies for auditory processing disorders under more real-life conditions.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2024 ","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC53108.2024.10782636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study assesses the performance of different cross-validation splits for brain-signal-based Auditory Attention Decoding (AAD) using deep neural networks on three publicly available Electroencephalography datasets. We investigate the effect of trial-specific knowledge during training and assess adaptability to diverse scenarios with a trial-independent split. Introducing a causal time-series split, and simulating online decoding, our results demonstrate a consistent performance increase for auditory attention classification. These positive outcomes provide valuable insights for the development of future brain-signal-based AAD systems, emphasizing the potential for practical, person-dependent AAD applications. The results highlight the importance of diverse evaluation methodologies for enhancing generalizability in developing effective neurofeedback systems and assistive technologies for auditory processing disorders under more real-life conditions.

交叉验证方案对基于脑电图的深度神经网络听觉注意力检测的影响
本研究在三个公开的脑电图数据集上使用深度神经网络评估了基于脑信号的听觉注意解码(AAD)的不同交叉验证分割的性能。我们在训练中考察了特定试验知识的影响,并通过试验独立分裂评估了对不同情景的适应性。引入因果时间序列分裂,并模拟在线解码,我们的结果表明听觉注意分类的性能持续提高。这些积极的结果为未来基于脑信号的AAD系统的发展提供了有价值的见解,强调了实际的、依赖于人的AAD应用的潜力。研究结果强调了多种评估方法的重要性,以提高在更多现实生活条件下开发有效的神经反馈系统和听觉处理障碍辅助技术的可泛化性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信