Gabriel Ivucic, Saurav Pahuja, Felix Putze, Siqi Cai, Haizhou Li, Tanja Schultz
{"title":"The Impact of Cross-Validation Schemes for EEG-Based Auditory Attention Detection with Deep Neural Networks.","authors":"Gabriel Ivucic, Saurav Pahuja, Felix Putze, Siqi Cai, Haizhou Li, Tanja Schultz","doi":"10.1109/EMBC53108.2024.10782636","DOIUrl":null,"url":null,"abstract":"<p><p>This study assesses the performance of different cross-validation splits for brain-signal-based Auditory Attention Decoding (AAD) using deep neural networks on three publicly available Electroencephalography datasets. We investigate the effect of trial-specific knowledge during training and assess adaptability to diverse scenarios with a trial-independent split. Introducing a causal time-series split, and simulating online decoding, our results demonstrate a consistent performance increase for auditory attention classification. These positive outcomes provide valuable insights for the development of future brain-signal-based AAD systems, emphasizing the potential for practical, person-dependent AAD applications. The results highlight the importance of diverse evaluation methodologies for enhancing generalizability in developing effective neurofeedback systems and assistive technologies for auditory processing disorders under more real-life conditions.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2024 ","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC53108.2024.10782636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study assesses the performance of different cross-validation splits for brain-signal-based Auditory Attention Decoding (AAD) using deep neural networks on three publicly available Electroencephalography datasets. We investigate the effect of trial-specific knowledge during training and assess adaptability to diverse scenarios with a trial-independent split. Introducing a causal time-series split, and simulating online decoding, our results demonstrate a consistent performance increase for auditory attention classification. These positive outcomes provide valuable insights for the development of future brain-signal-based AAD systems, emphasizing the potential for practical, person-dependent AAD applications. The results highlight the importance of diverse evaluation methodologies for enhancing generalizability in developing effective neurofeedback systems and assistive technologies for auditory processing disorders under more real-life conditions.