Nawfal Guefrachi, Jian Shi, Hakim Ghazzai, Ahmad Alsharoa
{"title":"Leveraging 3D LiDAR Sensors to Enable Enhanced Urban Safety and Public Health: Pedestrian Monitoring and Abnormal Activity Detection.","authors":"Nawfal Guefrachi, Jian Shi, Hakim Ghazzai, Ahmad Alsharoa","doi":"10.1109/EMBC53108.2024.10782331","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of Light Detection and Ranging (LiDAR) and Internet of Things (IoT) technologies offers transformative opportunities for public health informatics in urban safety and pedestrian well-being. This paper proposes a novel framework that utilizes these technologies for enhanced 3D object detection and activity classification in urban traffic scenarios. By employing elevated LiDAR, we obtain detailed 3D point cloud data, enabling precise pedestrian activity monitoring. To overcome urban data scarcity, we create a specialized dataset through simulated traffic environments in Blender, facilitating targeted model training. Our approach uses a modified Point Voxel Region-Based Convolutional Neural Network (PV-RCNN) for robust 3D detection and PointNet for classifying pedestrian activities, significantly benefiting urban traffic management and public health by offering insights into pedestrian behavior and promoting safer urban environments. Our dual-model approach not only enhances urban traffic management but also contributes significantly to public health by providing insights into pedestrian behavior and promoting safer urban environment.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2024 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC53108.2024.10782331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of Light Detection and Ranging (LiDAR) and Internet of Things (IoT) technologies offers transformative opportunities for public health informatics in urban safety and pedestrian well-being. This paper proposes a novel framework that utilizes these technologies for enhanced 3D object detection and activity classification in urban traffic scenarios. By employing elevated LiDAR, we obtain detailed 3D point cloud data, enabling precise pedestrian activity monitoring. To overcome urban data scarcity, we create a specialized dataset through simulated traffic environments in Blender, facilitating targeted model training. Our approach uses a modified Point Voxel Region-Based Convolutional Neural Network (PV-RCNN) for robust 3D detection and PointNet for classifying pedestrian activities, significantly benefiting urban traffic management and public health by offering insights into pedestrian behavior and promoting safer urban environments. Our dual-model approach not only enhances urban traffic management but also contributes significantly to public health by providing insights into pedestrian behavior and promoting safer urban environment.