Identifying Prediabetes in Canadian Populations Using Machine Learning.

Katherine Lu, Paijani Sheth, Zhi Lin Zhou, Kamyar Kazari, Aziz Guergachi, Karim Keshavjee, Mohammad Noaeen, Zahra Shakeri
{"title":"Identifying Prediabetes in Canadian Populations Using Machine Learning.","authors":"Katherine Lu, Paijani Sheth, Zhi Lin Zhou, Kamyar Kazari, Aziz Guergachi, Karim Keshavjee, Mohammad Noaeen, Zahra Shakeri","doi":"10.1109/EMBC53108.2024.10782174","DOIUrl":null,"url":null,"abstract":"<p><p>Prediabetes is a critical health condition characterized by elevated blood glucose levels that fall below the threshold for Type 2 diabetes (T2D) diagnosis. Accurate identification of prediabetes is essential to forestall the progression to T2D among at-risk individuals. This study aims to pinpoint the most effective machine learning (ML) model for prediabetes prediction and to elucidate the key biological variables critical for distinguishing individuals with prediabetes. Utilizing data from the Canadian Primary Care Sentinel Surveillance Network (CPCSSN), our analysis included 6,414 participants identified as either nondiabetic or prediabetic. A rigorous selection process led to the identification of ten variables for the study, informed by literature review, data completeness, and the evaluation of collinearity. Our comparative analysis of seven ML models revealed that the Deep Neural Network (DNN), enhanced with early stop regularization, outshined others by achieving a recall rate of 60%. This model's performance underscores its potential in effectively identifying prediabetic individuals, showcasing the strategic integration of ML in healthcare. While the model reflects a significant advancement in prediabetes prediction, it also opens avenues for further research to refine prediction accuracy, possibly by integrating novel biological markers or exploring alternative modeling techniques. The results of our work represent a pivotal step forward in the early detection of prediabetes, contributing significantly to preventive healthcare measures and the broader fight against the global epidemic of Type 2 diabetes.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2024 ","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC53108.2024.10782174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Prediabetes is a critical health condition characterized by elevated blood glucose levels that fall below the threshold for Type 2 diabetes (T2D) diagnosis. Accurate identification of prediabetes is essential to forestall the progression to T2D among at-risk individuals. This study aims to pinpoint the most effective machine learning (ML) model for prediabetes prediction and to elucidate the key biological variables critical for distinguishing individuals with prediabetes. Utilizing data from the Canadian Primary Care Sentinel Surveillance Network (CPCSSN), our analysis included 6,414 participants identified as either nondiabetic or prediabetic. A rigorous selection process led to the identification of ten variables for the study, informed by literature review, data completeness, and the evaluation of collinearity. Our comparative analysis of seven ML models revealed that the Deep Neural Network (DNN), enhanced with early stop regularization, outshined others by achieving a recall rate of 60%. This model's performance underscores its potential in effectively identifying prediabetic individuals, showcasing the strategic integration of ML in healthcare. While the model reflects a significant advancement in prediabetes prediction, it also opens avenues for further research to refine prediction accuracy, possibly by integrating novel biological markers or exploring alternative modeling techniques. The results of our work represent a pivotal step forward in the early detection of prediabetes, contributing significantly to preventive healthcare measures and the broader fight against the global epidemic of Type 2 diabetes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信