Identifying Canonical multi-scale Intrinsic Connectivity Networks in Infant resting-state fMRI and their Association with Age.

Prerana Bajracharya, Ashkan Faghiri, Zening Fu, Vince D Calhoun, Sarah Shultz, Armin Iraji
{"title":"Identifying Canonical multi-scale Intrinsic Connectivity Networks in Infant resting-state fMRI and their Association with Age.","authors":"Prerana Bajracharya, Ashkan Faghiri, Zening Fu, Vince D Calhoun, Sarah Shultz, Armin Iraji","doi":"10.1109/EMBC53108.2024.10782404","DOIUrl":null,"url":null,"abstract":"<p><p>Intrinsic Connectivity Networks (ICNs) reflect functional brain organization responsible for various cognitive processes, including sensory perception, motor control, memory, and attention. In this study, we used the Multivariate-Objective Optimization Independent Component Analysis with Reference (MOO-ICAR) and the NeuroMark 2.1 (adult) template to estimate subject-specific ICNs in resting-state functional magnetic resonance imaging (rsfMRI) data of infants. The NeuroMark 2.1 template contains 105 multi-scale canonical ICNs derived from 100k+ adults across multiple datasets. The multi-scale ICNs capture functional segregation across various levels of granularity across brain, revealing functional sources and their interactions. The results showed that the 105 ICNs in infants were spatially aligned with those in the template and revealed age-related distinctive patterns in static Functional Network Connectivity (sFNC), particularly in the sub-cortical and high-level cognitive domains. This study is the first to investigate the presence and development of these multi-scale ICNs in infant rsfMRI data. Our findings confirmed the presence of identifiable canonical ICNs in infants as young as six months, showcasing a strong association between these networks and age and suggesting potential biomarkers for early identification of neurodevelopmental disability.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2024 ","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC53108.2024.10782404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Intrinsic Connectivity Networks (ICNs) reflect functional brain organization responsible for various cognitive processes, including sensory perception, motor control, memory, and attention. In this study, we used the Multivariate-Objective Optimization Independent Component Analysis with Reference (MOO-ICAR) and the NeuroMark 2.1 (adult) template to estimate subject-specific ICNs in resting-state functional magnetic resonance imaging (rsfMRI) data of infants. The NeuroMark 2.1 template contains 105 multi-scale canonical ICNs derived from 100k+ adults across multiple datasets. The multi-scale ICNs capture functional segregation across various levels of granularity across brain, revealing functional sources and their interactions. The results showed that the 105 ICNs in infants were spatially aligned with those in the template and revealed age-related distinctive patterns in static Functional Network Connectivity (sFNC), particularly in the sub-cortical and high-level cognitive domains. This study is the first to investigate the presence and development of these multi-scale ICNs in infant rsfMRI data. Our findings confirmed the presence of identifiable canonical ICNs in infants as young as six months, showcasing a strong association between these networks and age and suggesting potential biomarkers for early identification of neurodevelopmental disability.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信