Low-Rank Constrained Reacquired-Navigator Reconstruction of multi-shot DWI.

Jiantai Zhou, Huabin Zhang, Penghui Luo, Changliang Wang, Fulang Qi, Jiaojiao Hu, Kecheng Yuan, Bensheng Qiu
{"title":"Low-Rank Constrained Reacquired-Navigator Reconstruction of multi-shot DWI.","authors":"Jiantai Zhou, Huabin Zhang, Penghui Luo, Changliang Wang, Fulang Qi, Jiaojiao Hu, Kecheng Yuan, Bensheng Qiu","doi":"10.1109/EMBC53108.2024.10782950","DOIUrl":null,"url":null,"abstract":"<p><p>The Diffusion-Weighted Imaging (DWI) requires additional acquisition of phase correction data and parallel imaging prescan data to respectively suppress artifacts caused by odd-even echo errors and motion-induced phase errors. In this study, we propose subtle modifications to the widely used spin-echo DW sequence, wherein an additional 180° radiofrequency refocusing pulse is applied after the completion of image echoes to acquire fully sampled navigator-echo data. Our proposed approach draws parallels with the dual spin-echo DW technique. However, our methodology distinguishes itself by utilizing positive and negative gradients to independently capture fully sampled navigator-echo data. Following this, we employ algorithms grounded in low-rank constraints, in conjunction with the reacquired navigator-echo data to address the two major phase errors inherent in Multi-Shot DWI (MSDWI). Simulation studies and in vivo brain imaging experiments demonstrate that this approach effectively suppresses image artifacts caused by the phase error, without the need for additional time-consuming prescans.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2024 ","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC53108.2024.10782950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Diffusion-Weighted Imaging (DWI) requires additional acquisition of phase correction data and parallel imaging prescan data to respectively suppress artifacts caused by odd-even echo errors and motion-induced phase errors. In this study, we propose subtle modifications to the widely used spin-echo DW sequence, wherein an additional 180° radiofrequency refocusing pulse is applied after the completion of image echoes to acquire fully sampled navigator-echo data. Our proposed approach draws parallels with the dual spin-echo DW technique. However, our methodology distinguishes itself by utilizing positive and negative gradients to independently capture fully sampled navigator-echo data. Following this, we employ algorithms grounded in low-rank constraints, in conjunction with the reacquired navigator-echo data to address the two major phase errors inherent in Multi-Shot DWI (MSDWI). Simulation studies and in vivo brain imaging experiments demonstrate that this approach effectively suppresses image artifacts caused by the phase error, without the need for additional time-consuming prescans.

多镜头DWI的低秩约束重采集导航重构。
扩散加权成像(DWI)需要额外获取相位校正数据和并行成像预扫描数据,分别抑制由奇偶回波误差和运动引起的相位误差引起的伪影。在这项研究中,我们对广泛使用的自旋回波DW序列进行了细微的修改,其中在图像回波完成后应用额外的180°射频重聚焦脉冲以获得完全采样的导航回波数据。我们提出的方法与双自旋回波DW技术相似。然而,我们的方法通过利用正梯度和负梯度来独立捕获完全采样的导航回波数据而脱颖而出。在此之后,我们采用基于低秩约束的算法,结合重新获取的导航回波数据来解决多镜头DWI (MSDWI)固有的两个主要相位误差。仿真研究和活体脑成像实验表明,该方法有效地抑制了相位误差引起的图像伪影,而不需要额外耗时的预扫描。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信