Can Generative AI Learn Physiological Waveform Morphologies? A Study on Denoising Intracardiac Signals in Ischemic Cardiomyopathy.

Samuel Ruiperez-Campillo, Alain Ryser, Thomas M Sutter, Ruibin Feng, Prasanth Ganesan, Brototo Deb, Kelly A Brennan, Maarten Z H Kolk, Fleur V Y Tjong, Albert J Rogers, Sanjiv M Narayan, Julia E Vogt
{"title":"Can Generative AI Learn Physiological Waveform Morphologies? A Study on Denoising Intracardiac Signals in Ischemic Cardiomyopathy.","authors":"Samuel Ruiperez-Campillo, Alain Ryser, Thomas M Sutter, Ruibin Feng, Prasanth Ganesan, Brototo Deb, Kelly A Brennan, Maarten Z H Kolk, Fleur V Y Tjong, Albert J Rogers, Sanjiv M Narayan, Julia E Vogt","doi":"10.1109/EMBC53108.2024.10782966","DOIUrl":null,"url":null,"abstract":"<p><p>Reducing electrophysiological (EP) signal noise is essential for diagnosis, mapping, and ablation, yet traditional approaches are suboptimal. This study tests the hypothesis that generative artificial intelligence (AI), specifically Variational Autoencoders (VAEs), can effectively denoise these signals by forming robust internal representations of 'clean' signals. Utilizing a dataset of 5706 time series from 42 patients with ischemic cardiomyopathy at risk of cardiac sudden death, we set out to apply a β-VAE model to denoise and reconstruct intra-ventricular monophasic action potential (MAP) signals, which have verifiable morphology. The β-VAE model is evaluated against various noise types, including EP noise, demonstrating superior denoising performance compared to traditional methods (Pearson's Correlation of denoised vs original of 0.967 ± 0.009 for our proposed model vs 0.879 ± 0.022 for the best performing baseline). Results indicate that the model effectively reduces a wide array of noise types, particularly EP noise. We conclude that generative AI provides powerful tools that can eliminate diverse sources of noise in single beats by learning essential signal features without manual annotation, outperforming state-of-the-art denoising techniques.Clinical Relevance- The proposed β-VAE model's ability to effectively denoise and reconstruct intracardiac signals, particularly in the challenging context of arrhythmias, can significantly enhance diagnostic accuracy across a variety of heart rhythm disorders and improve treatment efficacy.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2024 ","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC53108.2024.10782966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reducing electrophysiological (EP) signal noise is essential for diagnosis, mapping, and ablation, yet traditional approaches are suboptimal. This study tests the hypothesis that generative artificial intelligence (AI), specifically Variational Autoencoders (VAEs), can effectively denoise these signals by forming robust internal representations of 'clean' signals. Utilizing a dataset of 5706 time series from 42 patients with ischemic cardiomyopathy at risk of cardiac sudden death, we set out to apply a β-VAE model to denoise and reconstruct intra-ventricular monophasic action potential (MAP) signals, which have verifiable morphology. The β-VAE model is evaluated against various noise types, including EP noise, demonstrating superior denoising performance compared to traditional methods (Pearson's Correlation of denoised vs original of 0.967 ± 0.009 for our proposed model vs 0.879 ± 0.022 for the best performing baseline). Results indicate that the model effectively reduces a wide array of noise types, particularly EP noise. We conclude that generative AI provides powerful tools that can eliminate diverse sources of noise in single beats by learning essential signal features without manual annotation, outperforming state-of-the-art denoising techniques.Clinical Relevance- The proposed β-VAE model's ability to effectively denoise and reconstruct intracardiac signals, particularly in the challenging context of arrhythmias, can significantly enhance diagnostic accuracy across a variety of heart rhythm disorders and improve treatment efficacy.

生成式人工智能能学习生理波形形态吗?缺血性心肌病心内信号去噪的研究。
降低电生理(EP)信号噪声对于诊断、定位和消融至关重要,但传统方法并不理想。本研究验证了一种假设,即生成式人工智能(AI),特别是变分自编码器(VAEs),可以通过形成“干净”信号的鲁棒内部表示来有效地去噪这些信号。利用42例有心源性猝死风险的缺血性心肌病患者的5706个时间序列数据集,我们着手应用β-VAE模型对具有可验证形态学的室内单相动作电位(MAP)信号进行降噪和重构。对β-VAE模型进行了各种噪声类型的评估,包括EP噪声,与传统方法相比,显示出优越的去噪性能(我们提出的模型的去噪与原始的Pearson相关系数为0.967±0.009,而表现最佳的基线为0.879±0.022)。结果表明,该模型有效地降低了各种类型的噪声,特别是EP噪声。我们得出的结论是,生成式人工智能提供了强大的工具,可以通过学习基本信号特征来消除单个节拍中的各种噪声源,而无需手动注释,优于最先进的去噪技术。临床意义-提出的β-VAE模型能够有效地去噪和重建心内信号,特别是在心律失常的挑战性背景下,可以显着提高各种心律障碍的诊断准确性并提高治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信