A signal processing tool for extracting features from arterial blood pressure and photoplethysmography waveforms.

R Pal, A Rudas, S Kim, J N Chiang, M Cannesson
{"title":"A signal processing tool for extracting features from arterial blood pressure and photoplethysmography waveforms.","authors":"R Pal, A Rudas, S Kim, J N Chiang, M Cannesson","doi":"10.1109/EMBC53108.2024.10782973","DOIUrl":null,"url":null,"abstract":"<p><p>Arterial blood pressure (ABP) and photoplethysmography (PPG) waveforms contain valuable clinical information and play a crucial role in cardiovascular health monitoring, medical research, and managing medical conditions. The features extracted from PPG waveforms have various clinical applications ranging from blood pressure monitoring to nociception monitoring, while features from ABP waveforms can be used to calculate cardiac output and predict hypertension or hypotension. In recent years, many machine learning models have been proposed to utilize both PPG and ABP waveform features for these healthcare applications. However, the lack of standardized tools for extracting features from these waveforms could potentially affect their clinical effectiveness. In this paper, we propose an automatic signal processing tool for extracting features from ABP and PPG waveforms. Additionally, we generated a PPG feature library from a large perioperative dataset comprising 17,327 patients using the proposed tool. This PPG feature library can be used to explore the potential of these extracted features to develop machine learning models for non-invasive blood pressure estimation.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2024 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC53108.2024.10782973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Arterial blood pressure (ABP) and photoplethysmography (PPG) waveforms contain valuable clinical information and play a crucial role in cardiovascular health monitoring, medical research, and managing medical conditions. The features extracted from PPG waveforms have various clinical applications ranging from blood pressure monitoring to nociception monitoring, while features from ABP waveforms can be used to calculate cardiac output and predict hypertension or hypotension. In recent years, many machine learning models have been proposed to utilize both PPG and ABP waveform features for these healthcare applications. However, the lack of standardized tools for extracting features from these waveforms could potentially affect their clinical effectiveness. In this paper, we propose an automatic signal processing tool for extracting features from ABP and PPG waveforms. Additionally, we generated a PPG feature library from a large perioperative dataset comprising 17,327 patients using the proposed tool. This PPG feature library can be used to explore the potential of these extracted features to develop machine learning models for non-invasive blood pressure estimation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信