Automatic Pain Detection Algorithm for Patients with Cancer Pain Using Wristwatch Wearable Devices.

Hideyuki Hirayama, Shiori Yoshida, Konosuke Sasaki, Emi Yuda, Kento Masukawa, Mamiko Sato, Tomoo Ikari, Akira Inoue, Yoshihide Kawasaki, Mitsunori Miyashita
{"title":"Automatic Pain Detection Algorithm for Patients with Cancer Pain Using Wristwatch Wearable Devices.","authors":"Hideyuki Hirayama, Shiori Yoshida, Konosuke Sasaki, Emi Yuda, Kento Masukawa, Mamiko Sato, Tomoo Ikari, Akira Inoue, Yoshihide Kawasaki, Mitsunori Miyashita","doi":"10.1109/EMBC53108.2024.10781536","DOIUrl":null,"url":null,"abstract":"<p><p>Pain assessment becomes challenging for patients unable to self-report, given the subjective nature of pain. This study introduces an automatic pain detection model utilizing biological signals from wristwatch wearables and time series data from patients with cancer experiencing pain. Biological signals and pain data were obtained from 10 patients with cancer pain for 7 days during their hospitalization. A total of 73,154 minutes of data and 407 pain reports were obtained. We developed automatic classifiers to detect moderate or severe pain and pain above the personalized pain goal by several machine learning algorithms using per-patient and mixed data sets. The best-performing algorithm achieved an F1 score of 0.87, with enhanced performance using the personalized pain goal as the cutoff. While the generalized model requires improvement, the study demonstrates the feasibility of automatic pain detection using extended real-world patient data.</p>","PeriodicalId":72237,"journal":{"name":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","volume":"2024 ","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC53108.2024.10781536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pain assessment becomes challenging for patients unable to self-report, given the subjective nature of pain. This study introduces an automatic pain detection model utilizing biological signals from wristwatch wearables and time series data from patients with cancer experiencing pain. Biological signals and pain data were obtained from 10 patients with cancer pain for 7 days during their hospitalization. A total of 73,154 minutes of data and 407 pain reports were obtained. We developed automatic classifiers to detect moderate or severe pain and pain above the personalized pain goal by several machine learning algorithms using per-patient and mixed data sets. The best-performing algorithm achieved an F1 score of 0.87, with enhanced performance using the personalized pain goal as the cutoff. While the generalized model requires improvement, the study demonstrates the feasibility of automatic pain detection using extended real-world patient data.

利用腕式可穿戴设备为癌症疼痛患者提供自动疼痛检测算法
考虑到疼痛的主观性,疼痛评估对于无法自我报告的患者来说变得具有挑战性。本研究介绍了一种自动疼痛检测模型,利用来自可穿戴手表的生物信号和癌症患者经历疼痛的时间序列数据。对10例癌性疼痛患者进行住院7天的生物信号和疼痛数据采集。共获得73,154分钟的数据和407份疼痛报告。我们开发了自动分类器,通过使用每个患者和混合数据集的几种机器学习算法来检测中度或重度疼痛和超过个性化疼痛目标的疼痛。表现最好的算法F1得分为0.87,使用个性化疼痛目标作为截止点提高了性能。虽然广义模型需要改进,但该研究证明了使用扩展的真实世界患者数据进行自动疼痛检测的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信