Xilai Chen, Zhenchu Long, Yongxia Lei, Shaohua Liang, Yizou Sima, Ran Lin, Yajun Ding, Qiuxi Lin, Ting Ma, Yu Deng
{"title":"CT Differentiation and Prognostic Modeling in COVID-19 and Influenza A Pneumonia.","authors":"Xilai Chen, Zhenchu Long, Yongxia Lei, Shaohua Liang, Yizou Sima, Ran Lin, Yajun Ding, Qiuxi Lin, Ting Ma, Yu Deng","doi":"10.1016/j.acra.2025.02.004","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale and objectives: </strong>This study aimed to compare CT features of COVID-19 and Influenza A pneumonia, develop a diagnostic differential model, and explore a prognostic model for lesion resolution.</p><p><strong>Materials and methods: </strong>A total of 446 patients diagnosed with COVID-19 and 80 with Influenza A pneumonitis underwent baseline chest CT evaluation. Logistic regression analysis was conducted after multivariate analysis and the results were presented as nomograms. Machine learning models were also evaluated for their diagnostic performance. Prognostic factors for lesion resolution were analyzed using Cox regression after excluding patients who were lost to follow-up, with a nomogram being created.</p><p><strong>Results: </strong>COVID-19 patients showed more features such as thickening of bronchovascular bundles, crazy paving sign and traction bronchiectasis. Influenza A patients exhibited more features such as consolidation, coarse banding and pleural effusion (P < 0.05). The logistic regression model achieved AUC values of 0.937 (training) and 0.931 (validation). Machine learning models exhibited area under the curve values ranging from 0.8486 to 0.9017. COVID-19 patients showed better lesion resolution. Independent prognostic factors for resolution at baseline included age, sex, lesion distribution, morphology, coarse banding, and widening of the main pulmonary artery.</p><p><strong>Conclusion: </strong>Distinct imaging features can differentiate COVID-19 from Influenza A pneumonia. The logistic discriminative model and each machine - learning network model constructed in this study demonstrated efficacy. The nomogram for the logistic discriminative model exhibited high utility. Patients with COVID-19 may exhibit a better resolution of lesions. Certain baseline characteristics may act as independent prognostic factors for complete resolution of lesions.</p>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.acra.2025.02.004","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Rationale and objectives: This study aimed to compare CT features of COVID-19 and Influenza A pneumonia, develop a diagnostic differential model, and explore a prognostic model for lesion resolution.
Materials and methods: A total of 446 patients diagnosed with COVID-19 and 80 with Influenza A pneumonitis underwent baseline chest CT evaluation. Logistic regression analysis was conducted after multivariate analysis and the results were presented as nomograms. Machine learning models were also evaluated for their diagnostic performance. Prognostic factors for lesion resolution were analyzed using Cox regression after excluding patients who were lost to follow-up, with a nomogram being created.
Results: COVID-19 patients showed more features such as thickening of bronchovascular bundles, crazy paving sign and traction bronchiectasis. Influenza A patients exhibited more features such as consolidation, coarse banding and pleural effusion (P < 0.05). The logistic regression model achieved AUC values of 0.937 (training) and 0.931 (validation). Machine learning models exhibited area under the curve values ranging from 0.8486 to 0.9017. COVID-19 patients showed better lesion resolution. Independent prognostic factors for resolution at baseline included age, sex, lesion distribution, morphology, coarse banding, and widening of the main pulmonary artery.
Conclusion: Distinct imaging features can differentiate COVID-19 from Influenza A pneumonia. The logistic discriminative model and each machine - learning network model constructed in this study demonstrated efficacy. The nomogram for the logistic discriminative model exhibited high utility. Patients with COVID-19 may exhibit a better resolution of lesions. Certain baseline characteristics may act as independent prognostic factors for complete resolution of lesions.
期刊介绍:
Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.