FATP1-mediated fatty acid uptake in renal tubular cells as a countermeasure for hypothermia.

IF 4.8 3区 医学 Q1 GENETICS & HEREDITY
Kie Horioka, Hiroki Tanaka, Shimpei Watanabe, Shinnosuke Yamada, Shuhei Takauji, Akira Hayakawa, Shotaro Isozaki, Keisuke Okaba, Namiko Ishii, Ayumi Motomura, Hiroyuki Inoue, Lynda Addo, Daisuke Yajima, Yoichiro Takahashi, Henrik Druid, Lasse Pakanen, Katja Porvari
{"title":"FATP1-mediated fatty acid uptake in renal tubular cells as a countermeasure for hypothermia.","authors":"Kie Horioka, Hiroki Tanaka, Shimpei Watanabe, Shinnosuke Yamada, Shuhei Takauji, Akira Hayakawa, Shotaro Isozaki, Keisuke Okaba, Namiko Ishii, Ayumi Motomura, Hiroyuki Inoue, Lynda Addo, Daisuke Yajima, Yoichiro Takahashi, Henrik Druid, Lasse Pakanen, Katja Porvari","doi":"10.1007/s00109-025-02525-0","DOIUrl":null,"url":null,"abstract":"<p><p>Hypothermia is a condition in which body temperature falls below 35 °C, resulting from exposure to low environmental temperatures or underlying medical conditions. Postmortem examinations have revealed increased levels of fatty acids in blood and lipid droplet formation in renal tubules during hypothermia. However, the causes and implications of these findings are unclear. This study aimed to analyze the biological significance of these phenomena through lipidomics and transcriptomics analyses of specimens from emergency hypothermia patients and mouse hypothermia models. Both human hypothermia patients and murine models exhibited elevated plasma concentrations of fatty acids and their derivatives compared with controls. Hypothermic mouse kidneys displayed lipid droplet formation, with gene expression analysis revealing enhanced fatty acid uptake and β-oxidation in renal tubular cells. In primary cultured mouse renal proximal tubular cells, low temperatures increased the expression levels of Fatty acid transport protein 1 (FATP1), a fatty acid transporter, and boosted oxygen consumption via β-oxidation. Mice treated with FATP1 inhibitors showed a more rapid decrease in body temperature upon exposure to low temperatures compared with untreated mice. In conclusion, increased fatty acid uptake mediated by FATP1 in renal tubular cells plays a protective role during hypothermia. KEY MESSAGES: Low temperatures increase FATP1 expression and fatty acid uptake in renal proximal tubular cells, resulting in enhanced β-oxidation. Renal proximal tubular cells play an important role in the resistance to hypothermia via lipid uptake. Maintaining renal lipid metabolism is essential for cold stress adaptation.</p>","PeriodicalId":50127,"journal":{"name":"Journal of Molecular Medicine-Jmm","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Medicine-Jmm","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00109-025-02525-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Hypothermia is a condition in which body temperature falls below 35 °C, resulting from exposure to low environmental temperatures or underlying medical conditions. Postmortem examinations have revealed increased levels of fatty acids in blood and lipid droplet formation in renal tubules during hypothermia. However, the causes and implications of these findings are unclear. This study aimed to analyze the biological significance of these phenomena through lipidomics and transcriptomics analyses of specimens from emergency hypothermia patients and mouse hypothermia models. Both human hypothermia patients and murine models exhibited elevated plasma concentrations of fatty acids and their derivatives compared with controls. Hypothermic mouse kidneys displayed lipid droplet formation, with gene expression analysis revealing enhanced fatty acid uptake and β-oxidation in renal tubular cells. In primary cultured mouse renal proximal tubular cells, low temperatures increased the expression levels of Fatty acid transport protein 1 (FATP1), a fatty acid transporter, and boosted oxygen consumption via β-oxidation. Mice treated with FATP1 inhibitors showed a more rapid decrease in body temperature upon exposure to low temperatures compared with untreated mice. In conclusion, increased fatty acid uptake mediated by FATP1 in renal tubular cells plays a protective role during hypothermia. KEY MESSAGES: Low temperatures increase FATP1 expression and fatty acid uptake in renal proximal tubular cells, resulting in enhanced β-oxidation. Renal proximal tubular cells play an important role in the resistance to hypothermia via lipid uptake. Maintaining renal lipid metabolism is essential for cold stress adaptation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Molecular Medicine-Jmm
Journal of Molecular Medicine-Jmm 医学-医学:研究与实验
CiteScore
9.30
自引率
0.00%
发文量
100
审稿时长
1.3 months
期刊介绍: The Journal of Molecular Medicine publishes original research articles and review articles that range from basic findings in mechanisms of disease pathogenesis to therapy. The focus includes all human diseases, including but not limited to: Aging, angiogenesis, autoimmune diseases as well as other inflammatory diseases, cancer, cardiovascular diseases, development and differentiation, endocrinology, gastrointestinal diseases and hepatology, genetics and epigenetics, hematology, hypoxia research, immunology, infectious diseases, metabolic disorders, neuroscience of diseases, -omics based disease research, regenerative medicine, and stem cell research. Studies solely based on cell lines will not be considered. Studies that are based on model organisms will be considered as long as they are directly relevant to human disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信