Expectations of healthcare AI and the role of trust: understanding patient views on how AI will impact cost, access, and patient-provider relationships.

IF 4.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Paige Nong, Molin Ji
{"title":"Expectations of healthcare AI and the role of trust: understanding patient views on how AI will impact cost, access, and patient-provider relationships.","authors":"Paige Nong, Molin Ji","doi":"10.1093/jamia/ocaf031","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Although efforts to effectively govern AI continue to develop, relatively little work has been done to systematically measure and include patient perspectives or expectations of AI in governance. This analysis is designed to understand patient expectations of healthcare AI.</p><p><strong>Materials and methods: </strong>Cross-sectional nationally representative survey of US adults fielded from June to July of 2023. A total of 2039 participants completed the survey and cross-sectional population weights were applied to produce national estimates.</p><p><strong>Results: </strong>Among US adults, 19.55% expect AI to improve their relationship with their doctor, while 19.4% expect it to increase affordability and 30.28% expect it will improve their access to care. Trust in providers and the healthcare system are positively associated with expectations of AI when controlling for demographic factors, general attitudes toward technology, and other healthcare-related variables.</p><p><strong>Discussion: </strong>US adults generally have low expectations of benefit from AI in healthcare, but those with higher trust in their providers and health systems are more likely to expect to benefit from AI.</p><p><strong>Conclusion: </strong>Trust and provider relationships should be key considerations for health systems as they create their AI governance processes and communicate with patients about AI tools. Evidence of patient benefit should be prioritized to preserve or promote trust.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocaf031","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Although efforts to effectively govern AI continue to develop, relatively little work has been done to systematically measure and include patient perspectives or expectations of AI in governance. This analysis is designed to understand patient expectations of healthcare AI.

Materials and methods: Cross-sectional nationally representative survey of US adults fielded from June to July of 2023. A total of 2039 participants completed the survey and cross-sectional population weights were applied to produce national estimates.

Results: Among US adults, 19.55% expect AI to improve their relationship with their doctor, while 19.4% expect it to increase affordability and 30.28% expect it will improve their access to care. Trust in providers and the healthcare system are positively associated with expectations of AI when controlling for demographic factors, general attitudes toward technology, and other healthcare-related variables.

Discussion: US adults generally have low expectations of benefit from AI in healthcare, but those with higher trust in their providers and health systems are more likely to expect to benefit from AI.

Conclusion: Trust and provider relationships should be key considerations for health systems as they create their AI governance processes and communicate with patients about AI tools. Evidence of patient benefit should be prioritized to preserve or promote trust.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the American Medical Informatics Association
Journal of the American Medical Informatics Association 医学-计算机:跨学科应用
CiteScore
14.50
自引率
7.80%
发文量
230
审稿时长
3-8 weeks
期刊介绍: JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信