Duk-Yeon Cho, Jun-Hyuk Han, In-Su Kim, Ji-Hong Lim, Hyun Myung Ko, Byungwook Kim, Dong-Kug Choi
{"title":"The acetyltransferase GCN5 contributes to neuroinflammation in mice by acetylating and activating the NF-κB subunit p65 in microglia.","authors":"Duk-Yeon Cho, Jun-Hyuk Han, In-Su Kim, Ji-Hong Lim, Hyun Myung Ko, Byungwook Kim, Dong-Kug Choi","doi":"10.1126/scisignal.adp8973","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroinflammation promotes the progression of various neurological and neurodegenerative diseases. Disrupted homeostasis of protein acetylation is implicated in neurodegeneration, and the lysine acetyltransferase GCN5 (also known as KAT2A) is implicated in peripheral inflammation. Here, we investigated whether GCN5 plays a role in neuroinflammation in the brain. Systemic administration of the bacterial molecule LPS in mice to induce peripheral inflammation increased the abundance of GCN5 in various organs, including in the brain and specifically in microglia. In response to LPS, GCN5 mediated the induction of the proinflammatory cytokines TNF-α and IL-6 and the inflammatory mediators COX-2 and iNOS in microglia. Further investigation in cultured microglial cells revealed that GCN5 was activated downstream of the innate immune receptor TLR4 to acetylate Lys<sup>310</sup> in the NF-κB subunit p65, thereby enabling the nuclear translocation and transcriptional activity of NF-κB and the resulting inflammatory response. Thus, targeting GCN5 might be explored further as a strategy to reduce neuroinflammation in the treatment of associated diseases.</p>","PeriodicalId":49560,"journal":{"name":"Science Signaling","volume":"18 876","pages":"eadp8973"},"PeriodicalIF":7.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1126/scisignal.adp8973","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Neuroinflammation promotes the progression of various neurological and neurodegenerative diseases. Disrupted homeostasis of protein acetylation is implicated in neurodegeneration, and the lysine acetyltransferase GCN5 (also known as KAT2A) is implicated in peripheral inflammation. Here, we investigated whether GCN5 plays a role in neuroinflammation in the brain. Systemic administration of the bacterial molecule LPS in mice to induce peripheral inflammation increased the abundance of GCN5 in various organs, including in the brain and specifically in microglia. In response to LPS, GCN5 mediated the induction of the proinflammatory cytokines TNF-α and IL-6 and the inflammatory mediators COX-2 and iNOS in microglia. Further investigation in cultured microglial cells revealed that GCN5 was activated downstream of the innate immune receptor TLR4 to acetylate Lys310 in the NF-κB subunit p65, thereby enabling the nuclear translocation and transcriptional activity of NF-κB and the resulting inflammatory response. Thus, targeting GCN5 might be explored further as a strategy to reduce neuroinflammation in the treatment of associated diseases.
Science SignalingBiochemistry, Genetics and Molecular Biology-Molecular Biology
自引率
0.00%
发文量
148
期刊介绍:
Science Signaling is a weekly, online multidisciplinary journal dedicated to the life sciences. Our editorial team's mission is to publish studies that elucidate the fundamental mechanisms underlying biological processes across various organisms. We prioritize research that offers novel insights into physiology, elucidates aberrant mechanisms leading to disease, identifies potential therapeutic targets and strategies, and characterizes the effects of drugs both in vitro and in vivo.