Assessment of health conditions from patient electronic health record portals vs self-reported questionnaires: an analysis of the INSPIRE study.

IF 4.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Rohan Khera, Mitsuaki Sawano, Frederick Warner, Andreas Coppi, Aline F Pedroso, Erica S Spatz, Huihui Yu, Michael Gottlieb, Sharon Saydah, Kari A Stephens, Kristin L Rising, Joann G Elmore, Mandy J Hill, Ahamed H Idris, Juan Carlos C Montoy, Kelli N O'Laughlin, Robert A Weinstein, Arjun Venkatesh
{"title":"Assessment of health conditions from patient electronic health record portals vs self-reported questionnaires: an analysis of the INSPIRE study.","authors":"Rohan Khera, Mitsuaki Sawano, Frederick Warner, Andreas Coppi, Aline F Pedroso, Erica S Spatz, Huihui Yu, Michael Gottlieb, Sharon Saydah, Kari A Stephens, Kristin L Rising, Joann G Elmore, Mandy J Hill, Ahamed H Idris, Juan Carlos C Montoy, Kelli N O'Laughlin, Robert A Weinstein, Arjun Venkatesh","doi":"10.1093/jamia/ocaf027","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Direct electronic access to multiple electronic health record (EHR) systems through patient portals offers a novel avenue for decentralized research. Given the critical value of patient characterization, we sought to compare computable evaluation of health conditions from patient-portal EHR against the traditional self-report.</p><p><strong>Materials and methods: </strong>In the nationwide Innovative Support for Patients with SARS-CoV-2 Infections Registry (INSPIRE) study, which linked self-reported questionnaires with multiplatform patient-portal EHR data, we compared self-reported health conditions across different clinical domains against computable definitions based on diagnosis codes, medications, vital signs, and laboratory testing. We assessed their concordance using Cohen's Kappa and the prognostic significance of differentially captured features as predictors of 1-year all-cause hospitalization risk.</p><p><strong>Results: </strong>Among 1683 participants (mean age 41 ± 15 years, 67% female, 63% non-Hispanic Whites), the prevalence of conditions varied substantially between EHR and self-report (-13.2% to +11.6% across definitions). Compared with comprehensive EHR phenotypes, self-report under-captured all conditions, including hypertension (27.9% vs 16.2%), diabetes (10.1% vs 6.2%), and heart disease (8.5% vs 4.3%). However, diagnosis codes alone were insufficient. The risk for 1-year hospitalization was better defined by the same features from patient-portal EHR (area under the receiver operating curve [AUROC] 0.79) than from self-report (AUROC 0.68).</p><p><strong>Discussion: </strong>EHR-derived computable phenotypes identified a higher prevalence of comorbidities than self-report, with prognostic value of additionally identified features. However, definitions based solely on diagnosis codes often undercaptured self-reported conditions, suggesting a role of broader EHR elements.</p><p><strong>Conclusion: </strong>In this nationwide study, patient-portal-derived EHR data enabled extensive capture of patient characteristics across multiple EHR platforms, allowing better disease phenotyping compared with self-report.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocaf027","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Direct electronic access to multiple electronic health record (EHR) systems through patient portals offers a novel avenue for decentralized research. Given the critical value of patient characterization, we sought to compare computable evaluation of health conditions from patient-portal EHR against the traditional self-report.

Materials and methods: In the nationwide Innovative Support for Patients with SARS-CoV-2 Infections Registry (INSPIRE) study, which linked self-reported questionnaires with multiplatform patient-portal EHR data, we compared self-reported health conditions across different clinical domains against computable definitions based on diagnosis codes, medications, vital signs, and laboratory testing. We assessed their concordance using Cohen's Kappa and the prognostic significance of differentially captured features as predictors of 1-year all-cause hospitalization risk.

Results: Among 1683 participants (mean age 41 ± 15 years, 67% female, 63% non-Hispanic Whites), the prevalence of conditions varied substantially between EHR and self-report (-13.2% to +11.6% across definitions). Compared with comprehensive EHR phenotypes, self-report under-captured all conditions, including hypertension (27.9% vs 16.2%), diabetes (10.1% vs 6.2%), and heart disease (8.5% vs 4.3%). However, diagnosis codes alone were insufficient. The risk for 1-year hospitalization was better defined by the same features from patient-portal EHR (area under the receiver operating curve [AUROC] 0.79) than from self-report (AUROC 0.68).

Discussion: EHR-derived computable phenotypes identified a higher prevalence of comorbidities than self-report, with prognostic value of additionally identified features. However, definitions based solely on diagnosis codes often undercaptured self-reported conditions, suggesting a role of broader EHR elements.

Conclusion: In this nationwide study, patient-portal-derived EHR data enabled extensive capture of patient characteristics across multiple EHR platforms, allowing better disease phenotyping compared with self-report.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the American Medical Informatics Association
Journal of the American Medical Informatics Association 医学-计算机:跨学科应用
CiteScore
14.50
自引率
7.80%
发文量
230
审稿时长
3-8 weeks
期刊介绍: JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信