A perspective on individualized treatment effects estimation from time-series health data.

IF 4.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Ghadeer O Ghosheh, Moritz Gögl, Tingting Zhu
{"title":"A perspective on individualized treatment effects estimation from time-series health data.","authors":"Ghadeer O Ghosheh, Moritz Gögl, Tingting Zhu","doi":"10.1093/jamia/ocae323","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The objective of this study is to provide an overview of the current landscape of individualized treatment effects (ITE) estimation, specifically focusing on methodologies proposed for time-series electronic health records (EHRs). We aim to identify gaps in the literature, discuss challenges, and propose future research directions to advance the field of personalized medicine.</p><p><strong>Materials and methods: </strong>We conducted a comprehensive literature review to identify and analyze relevant works on ITE estimation for time-series data. The review focused on theoretical assumptions, types of treatment settings, and computational frameworks employed in the existing literature.</p><p><strong>Results: </strong>The literature reveals a growing body of work on ITE estimation for tabular data, while methodologies specific to time-series EHRs are limited. We summarize and discuss the latest advancements, including the types of models proposed, the theoretical foundations, and the computational approaches used.</p><p><strong>Discussion: </strong>The limitations and challenges of current ITE estimation methods for time-series data are discussed, including the lack of standardized evaluation metrics and the need for more diverse and representative datasets. We also highlight considerations and potential biases that may arise in personalized treatment effect estimation.</p><p><strong>Conclusion: </strong>This work provides a comprehensive overview of ITE estimation for time-series EHR data, offering insights into the current state of the field and identifying future research directions. By addressing the limitations and challenges, we hope to encourage further exploration and innovation in this exciting and under-studied area of personalized medicine.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocae323","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: The objective of this study is to provide an overview of the current landscape of individualized treatment effects (ITE) estimation, specifically focusing on methodologies proposed for time-series electronic health records (EHRs). We aim to identify gaps in the literature, discuss challenges, and propose future research directions to advance the field of personalized medicine.

Materials and methods: We conducted a comprehensive literature review to identify and analyze relevant works on ITE estimation for time-series data. The review focused on theoretical assumptions, types of treatment settings, and computational frameworks employed in the existing literature.

Results: The literature reveals a growing body of work on ITE estimation for tabular data, while methodologies specific to time-series EHRs are limited. We summarize and discuss the latest advancements, including the types of models proposed, the theoretical foundations, and the computational approaches used.

Discussion: The limitations and challenges of current ITE estimation methods for time-series data are discussed, including the lack of standardized evaluation metrics and the need for more diverse and representative datasets. We also highlight considerations and potential biases that may arise in personalized treatment effect estimation.

Conclusion: This work provides a comprehensive overview of ITE estimation for time-series EHR data, offering insights into the current state of the field and identifying future research directions. By addressing the limitations and challenges, we hope to encourage further exploration and innovation in this exciting and under-studied area of personalized medicine.

从时间序列健康数据估计个体化治疗效果的视角。
目的:本研究的目的是概述个体化治疗效果(ITE)评估的现状,特别关注时间序列电子健康记录(EHRs)提出的方法。我们的目标是找出文献中的差距,讨论挑战,并提出未来的研究方向,以推进个性化医疗领域。材料和方法:我们进行了全面的文献综述,以识别和分析时间序列数据的ITE估计的相关工作。回顾的重点是理论假设,治疗设置的类型,并在现有文献中采用计算框架。结果:文献显示,越来越多的工作对表格数据进行ITE估计,而特定于时间序列电子病历的方法是有限的。我们总结和讨论了最新的进展,包括提出的模型类型、理论基础和使用的计算方法。讨论:讨论了当前时间序列数据的ITE估计方法的局限性和挑战,包括缺乏标准化的评估指标和需要更多样化和更具代表性的数据集。我们还强调了个性化治疗效果估计中可能出现的注意事项和潜在偏差。结论:本工作对时间序列EHR数据的ITE估计进行了全面概述,为该领域的现状提供了见解,并确定了未来的研究方向。通过解决局限性和挑战,我们希望鼓励在个性化医疗这一令人兴奋和研究不足的领域进行进一步的探索和创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the American Medical Informatics Association
Journal of the American Medical Informatics Association 医学-计算机:跨学科应用
CiteScore
14.50
自引率
7.80%
发文量
230
审稿时长
3-8 weeks
期刊介绍: JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信