Dustin J Sokolowski, Mingjie Mai, Arnav Verma, Gabriela Morgenshtern, Vallijah Subasri, Hareem Naveed, Maria Yampolsky, Michael D Wilson, Anna Goldenberg, Lauren Erdman
{"title":"iModEst: disentangling -omic impacts on gene expression variation across genes and tissues.","authors":"Dustin J Sokolowski, Mingjie Mai, Arnav Verma, Gabriela Morgenshtern, Vallijah Subasri, Hareem Naveed, Maria Yampolsky, Michael D Wilson, Anna Goldenberg, Lauren Erdman","doi":"10.1093/nargab/lqaf011","DOIUrl":null,"url":null,"abstract":"<p><p>Many regulatory factors impact the expression of individual genes including, but not limited, to microRNA, long non-coding RNA (lncRNA), transcription factors (TFs), <i>cis-</i>methylation, copy number variation (CNV), and single-nucleotide polymorphisms (SNPs). While each mechanism can influence gene expression substantially, the relative importance of each mechanism at the level of individual genes and tissues is poorly understood. Here, we present the integrative Models of Estimated gene expression (iModEst), which details the relative contribution of different regulators to the gene expression of 16,000 genes and 21 tissues within The Cancer Genome Atlas (TCGA). Specifically, we derive predictive models of gene expression using tumour data and test their predictive accuracy in cancerous and tumour-adjacent tissues. Our models can explain up to 70% of the variance in gene expression across 43% of the genes within both tumour and tumour-adjacent tissues. We confirm that TF expression best predicts gene expression in both tumour and tumour-adjacent tissue whereas methylation predictive models in tumour tissues does not transfer well to tumour adjacent tissues. We find new patterns and recapitulate previously reported relationships between regulator and gene-expression, such as CNV-predicted <i>FGFR2</i> expression and SNP-predicted <i>TP63</i> expression. Together, iModEst offers an interactive, comprehensive atlas of individual regulator-gene-tissue expression relationships as well as relationships between regulators.</p>","PeriodicalId":33994,"journal":{"name":"NAR Genomics and Bioinformatics","volume":"7 1","pages":"lqaf011"},"PeriodicalIF":4.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879402/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR Genomics and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/nargab/lqaf011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Many regulatory factors impact the expression of individual genes including, but not limited, to microRNA, long non-coding RNA (lncRNA), transcription factors (TFs), cis-methylation, copy number variation (CNV), and single-nucleotide polymorphisms (SNPs). While each mechanism can influence gene expression substantially, the relative importance of each mechanism at the level of individual genes and tissues is poorly understood. Here, we present the integrative Models of Estimated gene expression (iModEst), which details the relative contribution of different regulators to the gene expression of 16,000 genes and 21 tissues within The Cancer Genome Atlas (TCGA). Specifically, we derive predictive models of gene expression using tumour data and test their predictive accuracy in cancerous and tumour-adjacent tissues. Our models can explain up to 70% of the variance in gene expression across 43% of the genes within both tumour and tumour-adjacent tissues. We confirm that TF expression best predicts gene expression in both tumour and tumour-adjacent tissue whereas methylation predictive models in tumour tissues does not transfer well to tumour adjacent tissues. We find new patterns and recapitulate previously reported relationships between regulator and gene-expression, such as CNV-predicted FGFR2 expression and SNP-predicted TP63 expression. Together, iModEst offers an interactive, comprehensive atlas of individual regulator-gene-tissue expression relationships as well as relationships between regulators.