{"title":"Modeling the developing nervous system: a neuroscience perspective on the use of NAMs in DNT testing.","authors":"Andrew J Newell, Heather B Patisaul","doi":"10.1093/toxsci/kfaf028","DOIUrl":null,"url":null,"abstract":"<p><p>There is widespread concern that environmental exposures constitute an underappreciated but significant contribution to rising rates of neurodevelopmental disorders (NDDs). There is also international consensus that regulatory frameworks for developmental neurotoxicity (DNT) testing are woefully inadequate, prompting reappraisal of DNT testing methods. One approach aims to make testing more efficient, less animal-intensive, and higher throughput, through in vitro evaluation of DNT. These new approach methodologies (NAMs) promise to accelerate and standardize DNT testing through interrogation of fundamental mechanisms of neurodevelopment. While in the early stages of development, they have significant, well-publicized shortcomings, including little to no accounting for cellular or genetic diversity, cell extrinsic signaling molecules, sex as a biological variable, developmental stage, or relevance to NDDs. One of the most advanced NAM platforms is a collection of 17 in vitro assays termed the DNT in vitro battery (IVB). While it models some aspects of neurodevelopmental processes, it fails to capture others. Proper brain ontogeny, and consequently normal behavior and cognition, relies on the integrity of fundamental mechanisms, their temporal/spatial fidelity, and the magnitude of their expression. These fundamental mechanisms are regulated by factors not considered by the DNT IVB including diverse cell types and neurotransmitters. While the DNT IVB could prove to be an important tool in DNT hazard detection, we identify key areas, including cell-extrinsic neurotransmitter signaling, diversity of neural progenitors, interneurons, and biological sex, that should be prioritized for development and inclusion in future refinements to meaningfully enhance biological coverage and relevance to human cognition and behavior.</p>","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxsci/kfaf028","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
There is widespread concern that environmental exposures constitute an underappreciated but significant contribution to rising rates of neurodevelopmental disorders (NDDs). There is also international consensus that regulatory frameworks for developmental neurotoxicity (DNT) testing are woefully inadequate, prompting reappraisal of DNT testing methods. One approach aims to make testing more efficient, less animal-intensive, and higher throughput, through in vitro evaluation of DNT. These new approach methodologies (NAMs) promise to accelerate and standardize DNT testing through interrogation of fundamental mechanisms of neurodevelopment. While in the early stages of development, they have significant, well-publicized shortcomings, including little to no accounting for cellular or genetic diversity, cell extrinsic signaling molecules, sex as a biological variable, developmental stage, or relevance to NDDs. One of the most advanced NAM platforms is a collection of 17 in vitro assays termed the DNT in vitro battery (IVB). While it models some aspects of neurodevelopmental processes, it fails to capture others. Proper brain ontogeny, and consequently normal behavior and cognition, relies on the integrity of fundamental mechanisms, their temporal/spatial fidelity, and the magnitude of their expression. These fundamental mechanisms are regulated by factors not considered by the DNT IVB including diverse cell types and neurotransmitters. While the DNT IVB could prove to be an important tool in DNT hazard detection, we identify key areas, including cell-extrinsic neurotransmitter signaling, diversity of neural progenitors, interneurons, and biological sex, that should be prioritized for development and inclusion in future refinements to meaningfully enhance biological coverage and relevance to human cognition and behavior.
期刊介绍:
The mission of Toxicological Sciences, the official journal of the Society of Toxicology, is to publish a broad spectrum of impactful research in the field of toxicology.
The primary focus of Toxicological Sciences is on original research articles. The journal also provides expert insight via contemporary and systematic reviews, as well as forum articles and editorial content that addresses important topics in the field.
The scope of Toxicological Sciences is focused on a broad spectrum of impactful toxicological research that will advance the multidisciplinary field of toxicology ranging from basic research to model development and application, and decision making. Submissions will include diverse technologies and approaches including, but not limited to: bioinformatics and computational biology, biochemistry, exposure science, histopathology, mass spectrometry, molecular biology, population-based sciences, tissue and cell-based systems, and whole-animal studies. Integrative approaches that combine realistic exposure scenarios with impactful analyses that move the field forward are encouraged.