Adeyemi O Adedeji, Michael R Tackett, Genesis Tejada, James E McDuffie
{"title":"Investigation of Urinary miRNA Profile Changes in Amphotericin B-Induced Nephrotoxicity in C57BL/6 Mouse, Sprague-Dawley Rats and Beagle Dogs.","authors":"Adeyemi O Adedeji, Michael R Tackett, Genesis Tejada, James E McDuffie","doi":"10.1093/toxsci/kfaf029","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNA (miRNAs) have been associated with drug-induced kidney injury (DIKI). However, there are few reports on the utility of miRNAs, when monitoring for nephrotoxicity across multiple species. The purpose of this study was to assess the value of urinary miRNA profile changes as renal safety biomarkers, when monitoring for kidney injury in investigative toxicology studies. To this end, we evaluated urine miRNA expression levels in response to amphotericin B (AmpB-induced nephrotoxicity in mice, rats and dogs. The results showed that 35 miRNAs were significantly differentially expressed across the three species in response to the induced renal injuries. Dogs showed the highest number of miRNAs with significant changes. miR-205-5p and miR-31-5p were the most consistently altered miRNA biomarkers across all three species. In rodents, these two miRNAs were the most sensitive markers and showed comparable or better sensitivities than the previously published urine protein biomarkers with the same nephrotoxicant. In dogs, none of the upregulated miRNAs were as sensitive as urine clusterin protein as observed in a previously published study with AmpB. Taken together, these miRNAs could complement the more established urinary protein biomarkers in monitoring DIKI in mice, rats and dogs. To our knowledge, this is the first report that demonstrates the comparative utility of urinary miRNAs for the early detection of DIKI across three nonclinical animal models.</p>","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxsci/kfaf029","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
MicroRNA (miRNAs) have been associated with drug-induced kidney injury (DIKI). However, there are few reports on the utility of miRNAs, when monitoring for nephrotoxicity across multiple species. The purpose of this study was to assess the value of urinary miRNA profile changes as renal safety biomarkers, when monitoring for kidney injury in investigative toxicology studies. To this end, we evaluated urine miRNA expression levels in response to amphotericin B (AmpB-induced nephrotoxicity in mice, rats and dogs. The results showed that 35 miRNAs were significantly differentially expressed across the three species in response to the induced renal injuries. Dogs showed the highest number of miRNAs with significant changes. miR-205-5p and miR-31-5p were the most consistently altered miRNA biomarkers across all three species. In rodents, these two miRNAs were the most sensitive markers and showed comparable or better sensitivities than the previously published urine protein biomarkers with the same nephrotoxicant. In dogs, none of the upregulated miRNAs were as sensitive as urine clusterin protein as observed in a previously published study with AmpB. Taken together, these miRNAs could complement the more established urinary protein biomarkers in monitoring DIKI in mice, rats and dogs. To our knowledge, this is the first report that demonstrates the comparative utility of urinary miRNAs for the early detection of DIKI across three nonclinical animal models.
期刊介绍:
The mission of Toxicological Sciences, the official journal of the Society of Toxicology, is to publish a broad spectrum of impactful research in the field of toxicology.
The primary focus of Toxicological Sciences is on original research articles. The journal also provides expert insight via contemporary and systematic reviews, as well as forum articles and editorial content that addresses important topics in the field.
The scope of Toxicological Sciences is focused on a broad spectrum of impactful toxicological research that will advance the multidisciplinary field of toxicology ranging from basic research to model development and application, and decision making. Submissions will include diverse technologies and approaches including, but not limited to: bioinformatics and computational biology, biochemistry, exposure science, histopathology, mass spectrometry, molecular biology, population-based sciences, tissue and cell-based systems, and whole-animal studies. Integrative approaches that combine realistic exposure scenarios with impactful analyses that move the field forward are encouraged.