A systematic review of natural language processing applications in Trauma & Orthopaedics.

IF 2.8 Q1 ORTHOPEDICS
Luke Farrow, Arslan Raja, Mingjun Zhong, Lesley Anderson
{"title":"A systematic review of natural language processing applications in Trauma & Orthopaedics.","authors":"Luke Farrow, Arslan Raja, Mingjun Zhong, Lesley Anderson","doi":"10.1302/2633-1462.63.BJO-2024-0081.R1","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Prevalence of artificial intelligence (AI) algorithms within the Trauma & Orthopaedics (T&O) literature has greatly increased over the last ten years. One increasingly explored aspect of AI is the automated interpretation of free-text data often prevalent in electronic medical records (known as natural language processing (NLP)). We set out to review the current evidence for applications of NLP methodology in T&O, including assessment of study design and reporting.</p><p><strong>Methods: </strong>MEDLINE, Allied and Complementary Medicine (AMED), Excerpta Medica Database (EMBASE), and Cochrane Central Register of Controlled Trials (CENTRAL) were screened for studies pertaining to NLP in T&O from database inception to 31 December 2023. An additional grey literature search was performed. NLP quality assessment followed the criteria outlined by Farrow et al in 2021 with two independent reviewers (classification as absent, incomplete, or complete). Reporting was performed according to the Synthesis-Without Meta-Analysis (SWiM) guidelines. The review protocol was registered on the Prospective Register of Systematic Reviews (PROSPERO; registration no. CRD42022291714).</p><p><strong>Results: </strong>The final review included 31 articles (published between 2012 and 2021). The most common subspeciality areas included trauma, arthroplasty, and spine; 13% (4/31) related to online reviews/social media, 42% (13/31) to clinical notes/operation notes, 42% (13/31) to radiology reports, and 3% (1/31) to systematic review. According to the reporting criteria, 16% (5/31) were considered good quality, 74% (23/31) average quality, and 6% (2/31) poor quality. The most commonly absent reporting criteria were evaluation of missing data (26/31), sample size calculation (31/31), and external validation of the study results (29/31 papers). Code and data availability were also poorly documented in most studies.</p><p><strong>Conclusion: </strong>Application of NLP is becoming increasingly common in T&O; however, published article quality is mixed, with few high-quality studies. There are key consistent deficiencies in published work relating to NLP which ultimately influence the potential for clinical application. Open science is an important part of research transparency that should be encouraged in NLP algorithm development and reporting.</p>","PeriodicalId":34103,"journal":{"name":"Bone & Joint Open","volume":"6 3","pages":"264-274"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879473/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone & Joint Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1302/2633-1462.63.BJO-2024-0081.R1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: Prevalence of artificial intelligence (AI) algorithms within the Trauma & Orthopaedics (T&O) literature has greatly increased over the last ten years. One increasingly explored aspect of AI is the automated interpretation of free-text data often prevalent in electronic medical records (known as natural language processing (NLP)). We set out to review the current evidence for applications of NLP methodology in T&O, including assessment of study design and reporting.

Methods: MEDLINE, Allied and Complementary Medicine (AMED), Excerpta Medica Database (EMBASE), and Cochrane Central Register of Controlled Trials (CENTRAL) were screened for studies pertaining to NLP in T&O from database inception to 31 December 2023. An additional grey literature search was performed. NLP quality assessment followed the criteria outlined by Farrow et al in 2021 with two independent reviewers (classification as absent, incomplete, or complete). Reporting was performed according to the Synthesis-Without Meta-Analysis (SWiM) guidelines. The review protocol was registered on the Prospective Register of Systematic Reviews (PROSPERO; registration no. CRD42022291714).

Results: The final review included 31 articles (published between 2012 and 2021). The most common subspeciality areas included trauma, arthroplasty, and spine; 13% (4/31) related to online reviews/social media, 42% (13/31) to clinical notes/operation notes, 42% (13/31) to radiology reports, and 3% (1/31) to systematic review. According to the reporting criteria, 16% (5/31) were considered good quality, 74% (23/31) average quality, and 6% (2/31) poor quality. The most commonly absent reporting criteria were evaluation of missing data (26/31), sample size calculation (31/31), and external validation of the study results (29/31 papers). Code and data availability were also poorly documented in most studies.

Conclusion: Application of NLP is becoming increasingly common in T&O; however, published article quality is mixed, with few high-quality studies. There are key consistent deficiencies in published work relating to NLP which ultimately influence the potential for clinical application. Open science is an important part of research transparency that should be encouraged in NLP algorithm development and reporting.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bone & Joint Open
Bone & Joint Open ORTHOPEDICS-
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信