Anna R Landim, Eike Lena Neuschulz, Isabel Donoso, Marjorie C Sorensen, Thomas Mueller, Matthias Schleuning
{"title":"Functional connectivity of animal-dispersed plant communities depends on the interacting effects of network specialization and resource diversity.","authors":"Anna R Landim, Eike Lena Neuschulz, Isabel Donoso, Marjorie C Sorensen, Thomas Mueller, Matthias Schleuning","doi":"10.1098/rspb.2024.2995","DOIUrl":null,"url":null,"abstract":"<p><p>Plant functional connectivity-the dispersal of plant propagules between habitat patches-is often ensured through animal movement. Yet, there is no quantitative framework to analyse how plant-animal interactions and the movement of seed dispersers influence community-level plant functional connectivity. We propose a trait-based framework to quantify plant connectivity with a model integrating plant-frugivore networks, animal-mediated seed-dispersal distances and the selection of target patches by seed dispersers. Using this framework, we estimated how network specialization, between-patch distance and resource diversity in a target patch affect the number and diversity of seeds dispersed to that patch. Specialized networks with a high degree of niche partitioning in plant-frugivore interactions reduced functional connectivity by limiting the diversity of seeds dispersed over long distances. Resource diversity in the target patch increased both seed number and diversity, especially in specialized networks and within short and intermediate distances between patches. Notably, resource diversity was particularly important at intermediate distances, where the number and diversity of seeds reaching a patch increased more strongly with resource diversity than at longer distances. Using a trait-based framework, we show that resource diversity in the target patch is a major driver of connectivity in animal-dispersed plant communities.</p>","PeriodicalId":20589,"journal":{"name":"Proceedings of the Royal Society B: Biological Sciences","volume":"292 2042","pages":"20242995"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881642/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rspb.2024.2995","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plant functional connectivity-the dispersal of plant propagules between habitat patches-is often ensured through animal movement. Yet, there is no quantitative framework to analyse how plant-animal interactions and the movement of seed dispersers influence community-level plant functional connectivity. We propose a trait-based framework to quantify plant connectivity with a model integrating plant-frugivore networks, animal-mediated seed-dispersal distances and the selection of target patches by seed dispersers. Using this framework, we estimated how network specialization, between-patch distance and resource diversity in a target patch affect the number and diversity of seeds dispersed to that patch. Specialized networks with a high degree of niche partitioning in plant-frugivore interactions reduced functional connectivity by limiting the diversity of seeds dispersed over long distances. Resource diversity in the target patch increased both seed number and diversity, especially in specialized networks and within short and intermediate distances between patches. Notably, resource diversity was particularly important at intermediate distances, where the number and diversity of seeds reaching a patch increased more strongly with resource diversity than at longer distances. Using a trait-based framework, we show that resource diversity in the target patch is a major driver of connectivity in animal-dispersed plant communities.
期刊介绍:
Proceedings B is the Royal Society’s flagship biological research journal, accepting original articles and reviews of outstanding scientific importance and broad general interest. The main criteria for acceptance are that a study is novel, and has general significance to biologists. Articles published cover a wide range of areas within the biological sciences, many have relevance to organisms and the environments in which they live. The scope includes, but is not limited to, ecology, evolution, behavior, health and disease epidemiology, neuroscience and cognition, behavioral genetics, development, biomechanics, paleontology, comparative biology, molecular ecology and evolution, and global change biology.