Chloride channels and mast cell function: pioneering new frontiers in IBD therapy.

IF 3.5 2区 生物学 Q3 CELL BIOLOGY
Molecular and Cellular Biochemistry Pub Date : 2025-07-01 Epub Date: 2025-03-04 DOI:10.1007/s11010-025-05243-w
Ahmed M Aljameeli, Bader Alsuwayt, Deepak Bharati, Vaishnavi Gohri, Popat Mohite, Sudarshan Singh, Vijay Chidrawar
{"title":"Chloride channels and mast cell function: pioneering new frontiers in IBD therapy.","authors":"Ahmed M Aljameeli, Bader Alsuwayt, Deepak Bharati, Vaishnavi Gohri, Popat Mohite, Sudarshan Singh, Vijay Chidrawar","doi":"10.1007/s11010-025-05243-w","DOIUrl":null,"url":null,"abstract":"<p><p>Emerging evidence indicates that chloride channels (ClCs) significantly affect the pathogenesis of inflammatory bowel disease (IBD) through their regulatory roles in mast cell function and epithelial integrity. IBD, encompassing conditions such as Crohn's disease and ulcerative colitis, involves chronic inflammation of the gastrointestinal tract, where channels influence immune responses, fluid balance, and cellular signalling pathways essential for maintaining mucosal homeostasis. This review examines the specific roles of ClC in mast cells, focussing on the regulation of mast cell activation, degranulation, cytokine release, and immune cell recruitment in inflamed tissues. Key channels, including Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and ClC-2, are discussed in detail because of their involvement in maintaining intestinal epithelial barrier function, a critical factor disrupted in IBD. For example, CFTR facilitates chloride ion transport across epithelial cells, which is essential for mucosal hydration and maintenance of the intestinal barrier. Reduced CFTR function can compromise this barrier, permitting microbial antigens to penetrate the underlying tissues and triggering excessive immune responses. ClC-2, another chloride channel expressed in mast cells and epithelial cells, supports tight junction integrity, contributes to barrier function, and reduces intestinal permeability. Dysregulation of these channels is linked to altered mast cell activity and excessive release of pro-inflammatory mediators, exacerbating IBD symptoms, such as diarrhoea, abdominal pain, and tissue damage. Here, we review recent pharmacological strategies targeting ClC, including CFTR potentiators and ClC-2 activators, which show the potential to mitigate inflammatory responses. Additionally, experimental approaches for selective modulation of chloride channels in mast cells have been explored. Although targeting ClC offers promising therapeutic avenues, challenges remain in achieving specificity and minimizing side effects. This review highlights the therapeutic potential of Cl channel modulation in mast cells as a novel approach for IBD treatment, aiming to reduce inflammation and restore intestinal homeostasis in affected patients.</p>","PeriodicalId":18724,"journal":{"name":"Molecular and Cellular Biochemistry","volume":" ","pages":"3951-3969"},"PeriodicalIF":3.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11010-025-05243-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Emerging evidence indicates that chloride channels (ClCs) significantly affect the pathogenesis of inflammatory bowel disease (IBD) through their regulatory roles in mast cell function and epithelial integrity. IBD, encompassing conditions such as Crohn's disease and ulcerative colitis, involves chronic inflammation of the gastrointestinal tract, where channels influence immune responses, fluid balance, and cellular signalling pathways essential for maintaining mucosal homeostasis. This review examines the specific roles of ClC in mast cells, focussing on the regulation of mast cell activation, degranulation, cytokine release, and immune cell recruitment in inflamed tissues. Key channels, including Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and ClC-2, are discussed in detail because of their involvement in maintaining intestinal epithelial barrier function, a critical factor disrupted in IBD. For example, CFTR facilitates chloride ion transport across epithelial cells, which is essential for mucosal hydration and maintenance of the intestinal barrier. Reduced CFTR function can compromise this barrier, permitting microbial antigens to penetrate the underlying tissues and triggering excessive immune responses. ClC-2, another chloride channel expressed in mast cells and epithelial cells, supports tight junction integrity, contributes to barrier function, and reduces intestinal permeability. Dysregulation of these channels is linked to altered mast cell activity and excessive release of pro-inflammatory mediators, exacerbating IBD symptoms, such as diarrhoea, abdominal pain, and tissue damage. Here, we review recent pharmacological strategies targeting ClC, including CFTR potentiators and ClC-2 activators, which show the potential to mitigate inflammatory responses. Additionally, experimental approaches for selective modulation of chloride channels in mast cells have been explored. Although targeting ClC offers promising therapeutic avenues, challenges remain in achieving specificity and minimizing side effects. This review highlights the therapeutic potential of Cl channel modulation in mast cells as a novel approach for IBD treatment, aiming to reduce inflammation and restore intestinal homeostasis in affected patients.

氯离子通道与肥大细胞功能:开辟 IBD 治疗新领域
新出现的证据表明,氯离子通道(ClCs)通过调节肥大细胞功能和上皮完整性显著影响炎症性肠病(IBD)的发病机制。IBD包括克罗恩病和溃疡性结肠炎等疾病,涉及胃肠道的慢性炎症,其中通道影响免疫反应,液体平衡和维持粘膜稳态所必需的细胞信号通路。本文综述了ClC在肥大细胞中的具体作用,重点关注肥大细胞活化、脱颗粒、细胞因子释放和炎症组织中免疫细胞募集的调节。关键通道,包括囊性纤维化跨膜传导调节因子(CFTR)和ClC-2,因为它们参与维持肠上皮屏障功能,这是IBD中一个关键因素被破坏,因此被详细讨论。例如,CFTR促进氯离子在上皮细胞间的运输,这对于粘膜水化和维持肠道屏障至关重要。CFTR功能的降低会破坏这一屏障,使微生物抗原能够穿透下层组织并引发过度的免疫反应。另一种在肥大细胞和上皮细胞中表达的氯离子通道ClC-2支持紧密连接的完整性,有助于屏障功能,并降低肠道通透性。这些通道的失调与肥大细胞活性的改变和促炎介质的过度释放有关,从而加剧IBD症状,如腹泻、腹痛和组织损伤。在这里,我们回顾了最近针对ClC的药理学策略,包括CFTR增强剂和ClC-2激活剂,它们显示出减轻炎症反应的潜力。此外,肥大细胞中氯离子通道选择性调节的实验方法也已被探索。尽管靶向小细胞肺癌提供了有希望的治疗途径,但在实现特异性和最小化副作用方面仍然存在挑战。这篇综述强调了肥大细胞Cl通道调节作为治疗IBD的一种新方法的治疗潜力,旨在减少炎症和恢复受影响患者的肠道稳态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular and Cellular Biochemistry
Molecular and Cellular Biochemistry 生物-细胞生物学
CiteScore
8.30
自引率
2.30%
发文量
293
审稿时长
1.7 months
期刊介绍: Molecular and Cellular Biochemistry: An International Journal for Chemical Biology in Health and Disease publishes original research papers and short communications in all areas of the biochemical sciences, emphasizing novel findings relevant to the biochemical basis of cellular function and disease processes, as well as the mechanics of action of hormones and chemical agents. Coverage includes membrane transport, receptor mechanism, immune response, secretory processes, and cytoskeletal function, as well as biochemical structure-function relationships in the cell. In addition to the reports of original research, the journal publishes state of the art reviews. Specific subjects covered by Molecular and Cellular Biochemistry include cellular metabolism, cellular pathophysiology, enzymology, ion transport, lipid biochemistry, membrane biochemistry, molecular biology, nuclear structure and function, and protein chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信