PROPERMAB: an integrative framework for in silico prediction of antibody developability using machine learning.

IF 5.6 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
mAbs Pub Date : 2025-12-01 Epub Date: 2025-03-05 DOI:10.1080/19420862.2025.2474521
Bian Li, Shukun Luo, Wenhua Wang, Jiahui Xu, Dingjiang Liu, Mohammed Shameem, John Mattila, Matthew C Franklin, Peter G Hawkins, Gurinder S Atwal
{"title":"PROPERMAB: an integrative framework for <i>in silico</i> prediction of antibody developability using machine learning.","authors":"Bian Li, Shukun Luo, Wenhua Wang, Jiahui Xu, Dingjiang Liu, Mohammed Shameem, John Mattila, Matthew C Franklin, Peter G Hawkins, Gurinder S Atwal","doi":"10.1080/19420862.2025.2474521","DOIUrl":null,"url":null,"abstract":"<p><p>Selection of lead therapeutic molecules is often driven predominantly by pharmacological efficacy and safety. Candidate developability, such as biophysical properties that affect the formulation of the molecule into a product, is usually evaluated only toward the end of the drug development pipeline. The ability to evaluate developability properties early in the process of antibody therapeutic development could accelerate the timeline from discovery to clinic and save considerable resources. <i>In silico</i> predictive approaches, such as machine learning models, which map molecular features to predictions of developability properties could offer a cost-effective and high-throughput alternative to experiments for antibody developability assessment. We developed a computational framework, PROPERMAB (PROPERties of Monoclonal AntiBodies), for large-scale and efficient <i>in silico</i> prediction of developability properties for monoclonal antibodies, using custom molecular features and machine learning modeling. We demonstrate the power of PROPERMAB by using it to develop models to predict antibody hydrophobic interaction chromatography retention time and high-concentration viscosity. We further show that structure-derived features can be rapidly and accurately predicted directly from sequences by pre-training simple models for molecular features, thus providing the ability to scale these approaches to repertoire-scale sequence datasets.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"17 1","pages":"2474521"},"PeriodicalIF":5.6000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901398/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mAbs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19420862.2025.2474521","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Selection of lead therapeutic molecules is often driven predominantly by pharmacological efficacy and safety. Candidate developability, such as biophysical properties that affect the formulation of the molecule into a product, is usually evaluated only toward the end of the drug development pipeline. The ability to evaluate developability properties early in the process of antibody therapeutic development could accelerate the timeline from discovery to clinic and save considerable resources. In silico predictive approaches, such as machine learning models, which map molecular features to predictions of developability properties could offer a cost-effective and high-throughput alternative to experiments for antibody developability assessment. We developed a computational framework, PROPERMAB (PROPERties of Monoclonal AntiBodies), for large-scale and efficient in silico prediction of developability properties for monoclonal antibodies, using custom molecular features and machine learning modeling. We demonstrate the power of PROPERMAB by using it to develop models to predict antibody hydrophobic interaction chromatography retention time and high-concentration viscosity. We further show that structure-derived features can be rapidly and accurately predicted directly from sequences by pre-training simple models for molecular features, thus providing the ability to scale these approaches to repertoire-scale sequence datasets.

求助全文
约1分钟内获得全文 求助全文
来源期刊
mAbs
mAbs 工程技术-仪器仪表
CiteScore
10.70
自引率
11.30%
发文量
77
审稿时长
6-12 weeks
期刊介绍: mAbs is a multi-disciplinary journal dedicated to the art and science of antibody research and development. The journal has a strong scientific and medical focus, but also strives to serve a broader readership. The articles are thus of interest to scientists, clinical researchers, and physicians, as well as the wider mAb community, including our readers involved in technology transfer, legal issues, investment, strategic planning and the regulation of therapeutics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信