{"title":"Downregulation of Pten Improves Huntington's Disease Phenotype by Reducing Htt Aggregates and Cell Death.","authors":"Nisha, Deepti Thapliyal, Bhavya Gohil, Aninda Sundar Modak, N Tarundas Singh, Chandramouli Mukherjee, Sanchi Ahuja, Bhavani Shankar Sahu, Mayanglambam Dhruba Singh","doi":"10.1007/s12035-025-04816-6","DOIUrl":null,"url":null,"abstract":"<p><p>Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder that stems from the expansion of CAG repeats within the coding region of Huntingtin (HTT) gene. Currently, there exists no effective therapeutic intervention that can prevent the progression of the disease. Our study aims to identify a novel genetic modifier with therapeutic potential. We employ transgenic flies containing HTT.ex1.Q93 and mRFP-HTT.588.Q138 constructs, which encode mutant pathogenic Huntingtin (Htt) proteins featuring 93 and 138 polyglutamine (Q) repeats respectively. The resultant mutant proteins cause the loss of photoreceptor neurons in the eye and a progressive loss of neuronal tissues in the brain and motor neurons in Drosophila. Several findings have demonstrated the association of HD with growth factor signaling defects. Phosphatase and tensin homolog (Pten) have been implicated in the negative regulation of the Insulin signaling/receptor tyrosine signaling pathway which regulates the growth and survival of cells. In the present study, we downregulated Pten and found a significant improvement in morphological phenotypes in the eye, brain, and motor neurons. These findings were further correlated with the enhancement of the functional vision and climbing ability of the flies. We also found the reduction in both Htt aggregate and caspase levels which are involved in the apoptotic pathway. In alignment with the genetic modulation of Pten, we elucidated the protective role of Pten inhibition through the utilization of VO-OHpic. VO-OHpic improved the climbing ability of flies and reduced the poly(Q) aggregates and apoptosis levels. A similar reduction in Htt aggregates was observed in the mouse neuronal inducible HD cell line model. Our study illustrates that Pten inhibition is a potential therapeutic approach for HD.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"8752-8767"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-025-04816-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder that stems from the expansion of CAG repeats within the coding region of Huntingtin (HTT) gene. Currently, there exists no effective therapeutic intervention that can prevent the progression of the disease. Our study aims to identify a novel genetic modifier with therapeutic potential. We employ transgenic flies containing HTT.ex1.Q93 and mRFP-HTT.588.Q138 constructs, which encode mutant pathogenic Huntingtin (Htt) proteins featuring 93 and 138 polyglutamine (Q) repeats respectively. The resultant mutant proteins cause the loss of photoreceptor neurons in the eye and a progressive loss of neuronal tissues in the brain and motor neurons in Drosophila. Several findings have demonstrated the association of HD with growth factor signaling defects. Phosphatase and tensin homolog (Pten) have been implicated in the negative regulation of the Insulin signaling/receptor tyrosine signaling pathway which regulates the growth and survival of cells. In the present study, we downregulated Pten and found a significant improvement in morphological phenotypes in the eye, brain, and motor neurons. These findings were further correlated with the enhancement of the functional vision and climbing ability of the flies. We also found the reduction in both Htt aggregate and caspase levels which are involved in the apoptotic pathway. In alignment with the genetic modulation of Pten, we elucidated the protective role of Pten inhibition through the utilization of VO-OHpic. VO-OHpic improved the climbing ability of flies and reduced the poly(Q) aggregates and apoptosis levels. A similar reduction in Htt aggregates was observed in the mouse neuronal inducible HD cell line model. Our study illustrates that Pten inhibition is a potential therapeutic approach for HD.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.