Extracellular mitochondria contribute to acute lung injury via disrupting macrophages after traumatic brain injury.

IF 9.3 1区 医学 Q1 IMMUNOLOGY
Yafan Liu, Fanjian Li, Lujia Tang, Kaifeng Pang, Yichi Zhang, Chaonan Zhang, Hui Guo, Tianrui Ma, Xiaoyang Zhang, Guili Yang, Ying Li, Zijian Zhou, Hejun Zhang, Yang Li, Ying Fu, Jianning Zhang, Jingfei Dong, Zilong Zhao
{"title":"Extracellular mitochondria contribute to acute lung injury via disrupting macrophages after traumatic brain injury.","authors":"Yafan Liu, Fanjian Li, Lujia Tang, Kaifeng Pang, Yichi Zhang, Chaonan Zhang, Hui Guo, Tianrui Ma, Xiaoyang Zhang, Guili Yang, Ying Li, Zijian Zhou, Hejun Zhang, Yang Li, Ying Fu, Jianning Zhang, Jingfei Dong, Zilong Zhao","doi":"10.1186/s12974-025-03390-x","DOIUrl":null,"url":null,"abstract":"<p><p>Acute lung injury (ALI) is the most frequently developed complication in patients with severe traumatic brain injury (TBI), but its underlying mechanism remains poorly understood. Here, we report results from a study designed to investigate the mechanistic link between TBI and ALI in mouse models, in vitro experiments, and a patient study, specifically focusing on the role of extracellular mitochondria (exMt). We detected high levels of exMt in the alveolar lavage fluid of patients with TBI. The bronchoalveolar lavage fluid (BALF) of mice subjected to controlled cerebral cortical impact contained 4.2 ± 1.4 × 10<sup>4</sup>/µl of exMt. We further showed that non-injured mice infused with exMt intravenously developed pulmonary edema, perivascular accumulation of macrophages, inflammation, and dysfunction. Results from complementary in vitro experiments showed that exMt bound to and were phagocytosed by interstitial macrophages, resulting in autophagic flux reduction and activation of macrophages. The phagocytosis of exMt depended on the CD36 and dynamin mediated pathway, and activation of macrophages depended on exMt-derived reactive oxygen species. This study discovered a novel mechanism by which exMt contribute to the pathogenesis of TBI-induced ALI through macrophages, which are activated, develop dysfunctional autophagy, and become inflammatory after phagocytosis of exMt.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"22 1","pages":"63"},"PeriodicalIF":9.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881407/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-025-03390-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Acute lung injury (ALI) is the most frequently developed complication in patients with severe traumatic brain injury (TBI), but its underlying mechanism remains poorly understood. Here, we report results from a study designed to investigate the mechanistic link between TBI and ALI in mouse models, in vitro experiments, and a patient study, specifically focusing on the role of extracellular mitochondria (exMt). We detected high levels of exMt in the alveolar lavage fluid of patients with TBI. The bronchoalveolar lavage fluid (BALF) of mice subjected to controlled cerebral cortical impact contained 4.2 ± 1.4 × 104/µl of exMt. We further showed that non-injured mice infused with exMt intravenously developed pulmonary edema, perivascular accumulation of macrophages, inflammation, and dysfunction. Results from complementary in vitro experiments showed that exMt bound to and were phagocytosed by interstitial macrophages, resulting in autophagic flux reduction and activation of macrophages. The phagocytosis of exMt depended on the CD36 and dynamin mediated pathway, and activation of macrophages depended on exMt-derived reactive oxygen species. This study discovered a novel mechanism by which exMt contribute to the pathogenesis of TBI-induced ALI through macrophages, which are activated, develop dysfunctional autophagy, and become inflammatory after phagocytosis of exMt.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Neuroinflammation
Journal of Neuroinflammation 医学-神经科学
CiteScore
15.90
自引率
3.20%
发文量
276
审稿时长
1 months
期刊介绍: The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes. Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems. The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信