A dual-stage framework for segmentation of the brain anatomical regions with high accuracy.

IF 2 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Peyman Sharifian, Alireza Karimian, Hossein Arabi
{"title":"A dual-stage framework for segmentation of the brain anatomical regions with high accuracy.","authors":"Peyman Sharifian, Alireza Karimian, Hossein Arabi","doi":"10.1007/s10334-025-01233-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study presents a novel deep learning-based framework for precise brain MR region segmentation, aiming to identify the location and the shape details of different anatomical structures within the brain.</p><p><strong>Materials and methods: </strong>The approach uses a two-stage 3D segmentation technique on a dataset of adult subjects, including cognitively normal participants and individuals with cognitive decline. Stage 1 employs a 3D U-Net to segment 13 brain regions, achieving a mean DSC of 0.904 ± 0.060 and a mean HD95 of 1.52 ± 1.53 mm (a mean DSC of 0.885 ± 0.065 and a mean HD95 of 1.57 ± 1.35 mm for smaller parts). For challenging regions like hippocampus, thalamus, cerebrospinal fluid, amygdala, basal ganglia, and corpus callosum, Stage 2 with SegResNet refines segmentation, improving mean DSC to 0.921 ± 0.048 and HD95 to 1.17 ± 0.69 mm.</p><p><strong>Results: </strong>Statistical analysis reveals significant improvements (p-value < 0.001) for these regions, with DSC increases ranging from 1.3 to 3.2% and HD95 reductions of 0.06-0.33 mm. Comparisons with recent studies highlight the superior performance of the performed method.</p><p><strong>Discussion: </strong>The inclusion of a second stage for refining the segmentation of smaller regions demonstrates substantial improvements, establishing the framework's potential for precise and reliable brain region segmentation across diverse cognitive groups.</p>","PeriodicalId":18067,"journal":{"name":"Magnetic Resonance Materials in Physics, Biology and Medicine","volume":" ","pages":"299-315"},"PeriodicalIF":2.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance Materials in Physics, Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10334-025-01233-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This study presents a novel deep learning-based framework for precise brain MR region segmentation, aiming to identify the location and the shape details of different anatomical structures within the brain.

Materials and methods: The approach uses a two-stage 3D segmentation technique on a dataset of adult subjects, including cognitively normal participants and individuals with cognitive decline. Stage 1 employs a 3D U-Net to segment 13 brain regions, achieving a mean DSC of 0.904 ± 0.060 and a mean HD95 of 1.52 ± 1.53 mm (a mean DSC of 0.885 ± 0.065 and a mean HD95 of 1.57 ± 1.35 mm for smaller parts). For challenging regions like hippocampus, thalamus, cerebrospinal fluid, amygdala, basal ganglia, and corpus callosum, Stage 2 with SegResNet refines segmentation, improving mean DSC to 0.921 ± 0.048 and HD95 to 1.17 ± 0.69 mm.

Results: Statistical analysis reveals significant improvements (p-value < 0.001) for these regions, with DSC increases ranging from 1.3 to 3.2% and HD95 reductions of 0.06-0.33 mm. Comparisons with recent studies highlight the superior performance of the performed method.

Discussion: The inclusion of a second stage for refining the segmentation of smaller regions demonstrates substantial improvements, establishing the framework's potential for precise and reliable brain region segmentation across diverse cognitive groups.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
58
审稿时长
>12 weeks
期刊介绍: MAGMA is a multidisciplinary international journal devoted to the publication of articles on all aspects of magnetic resonance techniques and their applications in medicine and biology. MAGMA currently publishes research papers, reviews, letters to the editor, and commentaries, six times a year. The subject areas covered by MAGMA include: advances in materials, hardware and software in magnetic resonance technology, new developments and results in research and practical applications of magnetic resonance imaging and spectroscopy related to biology and medicine, study of animal models and intact cells using magnetic resonance, reports of clinical trials on humans and clinical validation of magnetic resonance protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信