A Hierarchical Graph Convolutional Network with Infomax-Guided Graph Embedding for Population-Based ASD Detection.

IF 6.7 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xiaoke Hao, Mingming Ma, Jiaqing Tao, Jiahui Cao, Jing Qin, Feng Liu, Daoqiang Zhang, Dong Ming
{"title":"A Hierarchical Graph Convolutional Network with Infomax-Guided Graph Embedding for Population-Based ASD Detection.","authors":"Xiaoke Hao, Mingming Ma, Jiaqing Tao, Jiahui Cao, Jing Qin, Feng Liu, Daoqiang Zhang, Dong Ming","doi":"10.1109/JBHI.2025.3544302","DOIUrl":null,"url":null,"abstract":"<p><p>Recently, functional magnetic resonance imaging (fMRI)-based brain networks have been shown to be an effective diagnostic tool with great potential for accurately detecting autism spectrum disorders (ASD). Meanwhile, the successful use of graph convolution networks (GCNs) methods based on fMRI information has improved the classification accuracy of ASD. However, many graph convolution-based methods do not fully utilize the topological information of the brain functional connectivity network (BFCN) or ignore the effect of non-imaging information. Therefore, we propose a hierarchical graph embedding model that leverage both the topological information of the BFCN and the non-imaging information of the subjects to improve the classification accuracy. Specifically, our model first use the Infomax Module to automatically identify embedded features in regions of interests (ROIs) in the brain. Then, these features, along with non-imaging information, is used to construct a population graph model. Finally, we design a graph convolution framework to propagate and aggregate the node features and obtain the results for ASD detection. Our model takes into account both the significance of the BFCN to individual subjects and relationships between subjects in the population graph. The model performed autism detection using the Autism Brain Imaging Data Exchange (ABIDE) dataset and obtained an average accuracy of 77.2% and an AUC of 87.2%. These results exceed those of the baseline approach. Through extensive experiments, we demonstrate the competitiveness, robustness and effectiveness of our model in aiding ASD diagnosis.</p>","PeriodicalId":13073,"journal":{"name":"IEEE Journal of Biomedical and Health Informatics","volume":"PP ","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Biomedical and Health Informatics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/JBHI.2025.3544302","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, functional magnetic resonance imaging (fMRI)-based brain networks have been shown to be an effective diagnostic tool with great potential for accurately detecting autism spectrum disorders (ASD). Meanwhile, the successful use of graph convolution networks (GCNs) methods based on fMRI information has improved the classification accuracy of ASD. However, many graph convolution-based methods do not fully utilize the topological information of the brain functional connectivity network (BFCN) or ignore the effect of non-imaging information. Therefore, we propose a hierarchical graph embedding model that leverage both the topological information of the BFCN and the non-imaging information of the subjects to improve the classification accuracy. Specifically, our model first use the Infomax Module to automatically identify embedded features in regions of interests (ROIs) in the brain. Then, these features, along with non-imaging information, is used to construct a population graph model. Finally, we design a graph convolution framework to propagate and aggregate the node features and obtain the results for ASD detection. Our model takes into account both the significance of the BFCN to individual subjects and relationships between subjects in the population graph. The model performed autism detection using the Autism Brain Imaging Data Exchange (ABIDE) dataset and obtained an average accuracy of 77.2% and an AUC of 87.2%. These results exceed those of the baseline approach. Through extensive experiments, we demonstrate the competitiveness, robustness and effectiveness of our model in aiding ASD diagnosis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of Biomedical and Health Informatics
IEEE Journal of Biomedical and Health Informatics COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
13.60
自引率
6.50%
发文量
1151
期刊介绍: IEEE Journal of Biomedical and Health Informatics publishes original papers presenting recent advances where information and communication technologies intersect with health, healthcare, life sciences, and biomedicine. Topics include acquisition, transmission, storage, retrieval, management, and analysis of biomedical and health information. The journal covers applications of information technologies in healthcare, patient monitoring, preventive care, early disease diagnosis, therapy discovery, and personalized treatment protocols. It explores electronic medical and health records, clinical information systems, decision support systems, medical and biological imaging informatics, wearable systems, body area/sensor networks, and more. Integration-related topics like interoperability, evidence-based medicine, and secure patient data are also addressed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信