N4-acetylcytidine and other RNA modifications in epitranscriptome: insight into DNA repair and cancer development.

IF 3 4区 医学 Q2 GENETICS & HEREDITY
Epigenomics Pub Date : 2025-04-01 Epub Date: 2025-03-05 DOI:10.1080/17501911.2025.2473308
Eva Bártová, Lenka Stixová, Alena Svobodová Kovaříková
{"title":"N4-acetylcytidine and other RNA modifications in epitranscriptome: insight into DNA repair and cancer development.","authors":"Eva Bártová, Lenka Stixová, Alena Svobodová Kovaříková","doi":"10.1080/17501911.2025.2473308","DOIUrl":null,"url":null,"abstract":"<p><p>N4-acetylcytidine (ac4C) is a post-transcriptional RNA modification that plays a crucial role in the epitranscriptome, influencing gene expression and cellular function. This modification occurs at the cytosine base, where an acetyl group is installed to the nitrogen at the 4th position (N4). This co-transcription modification affects RNA stability, RNA structure, and translation efficiency. Recent studies have uncovered a potential link between RNA modifications and DNA repair mechanisms, suggesting that ac4C-modified or methylated RNAs may interact with factors involved in DNA repair pathways; thus, influencing the cellular response to DNA damage. Dysregulation of modified RNAs, including ac4C RNA, has been implicated in cancer development, where aberrant levels of these RNAs may contribute to oncogenic transformation by altering genome stability and the expression of key genes regulating cell proliferation, cell cycle progression, and apoptosis. Understanding the dynamics of modified RNAs offers promising insights into the role of epitranscriptome in DNA repair processes and cancer treatment.</p>","PeriodicalId":11959,"journal":{"name":"Epigenomics","volume":" ","pages":"411-422"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11980489/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17501911.2025.2473308","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

N4-acetylcytidine (ac4C) is a post-transcriptional RNA modification that plays a crucial role in the epitranscriptome, influencing gene expression and cellular function. This modification occurs at the cytosine base, where an acetyl group is installed to the nitrogen at the 4th position (N4). This co-transcription modification affects RNA stability, RNA structure, and translation efficiency. Recent studies have uncovered a potential link between RNA modifications and DNA repair mechanisms, suggesting that ac4C-modified or methylated RNAs may interact with factors involved in DNA repair pathways; thus, influencing the cellular response to DNA damage. Dysregulation of modified RNAs, including ac4C RNA, has been implicated in cancer development, where aberrant levels of these RNAs may contribute to oncogenic transformation by altering genome stability and the expression of key genes regulating cell proliferation, cell cycle progression, and apoptosis. Understanding the dynamics of modified RNAs offers promising insights into the role of epitranscriptome in DNA repair processes and cancer treatment.

外转录组中n4 -乙酰胞苷和其他RNA修饰:洞察DNA修复和癌症发展。
n4 -乙酰胞苷(ac4C)是一种转录后RNA修饰,在表转录组中起着至关重要的作用,影响基因表达和细胞功能。这种修饰发生在胞嘧啶碱基上,其中乙酰基被安装在氮的第4位(N4)上。这种共转录修饰影响RNA的稳定性、结构和翻译效率。最近的研究揭示了RNA修饰和DNA修复机制之间的潜在联系,表明ac4c修饰或甲基化的RNA可能与DNA修复途径中涉及的因子相互作用;从而影响细胞对DNA损伤的反应。包括ac4C RNA在内的修饰RNA的失调与癌症的发展有关,这些RNA的异常水平可能通过改变基因组稳定性和调节细胞增殖、细胞周期进展和细胞凋亡的关键基因的表达来促进致癌转化。了解修饰rna的动力学为了解表观转录组在DNA修复过程和癌症治疗中的作用提供了有希望的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Epigenomics
Epigenomics GENETICS & HEREDITY-
CiteScore
5.80
自引率
2.60%
发文量
95
审稿时长
>12 weeks
期刊介绍: Epigenomics provides the forum to address the rapidly progressing research developments in this ever-expanding field; to report on the major challenges ahead and critical advances that are propelling the science forward. The journal delivers this information in concise, at-a-glance article formats – invaluable to a time constrained community. Substantial developments in our current knowledge and understanding of genomics and epigenetics are constantly being made, yet this field is still in its infancy. Epigenomics provides a critical overview of the latest and most significant advances as they unfold and explores their potential application in the clinical setting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信