Quantitative EEG signatures in patients with and without epilepsy development after a first seizure.

IF 2.8 3区 医学 Q2 CLINICAL NEUROLOGY
Epilepsia Open Pub Date : 2025-03-04 DOI:10.1002/epi4.13128
Marysol Segovia-Oropeza, Erik Hans Ulrich Rauf, Ev-Christin Heide, Niels K Focke
{"title":"Quantitative EEG signatures in patients with and without epilepsy development after a first seizure.","authors":"Marysol Segovia-Oropeza, Erik Hans Ulrich Rauf, Ev-Christin Heide, Niels K Focke","doi":"10.1002/epi4.13128","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Diagnosing epilepsy after a first unprovoked seizure in the absence of visible epileptogenic lesions and interictal epileptiform discharges (IED) in the electroencephalogram (EEG) is challenging. Quantitative EEG analysis and functional connectivity (FC) have shown promise in identifying patterns across epilepsy syndromes. Hence, we retrospectively investigated whether there were differences in FC (imaginary part of coherency) and spectral band power in non-lesional, IED-free, unmedicated patients after a first unprovoked seizure in contrast to controls. Further, we investigated if there were differences between the patients who developed epilepsy and those who remained with a single seizure for at least 6 months after the first seizure.</p><p><strong>Methods: </strong>We used 240 s of resting-state EEG (19 channels) recordings of patients (n = 41) after a first unprovoked seizure and age and sex-matched healthy controls (n = 46). Twenty-one patients developed epilepsy (epilepsy group), while 20 had no further seizures during follow-up (single-seizure group). We computed source-reconstructed power and FC in five frequency bands (1 ± 29 Hz). Group differences were assessed using permutation analysis of linear models.</p><p><strong>Results: </strong>Patients who developed epilepsy showed increased theta power and FC, increased delta power, and decreased delta FC compared to healthy controls. The single-seizure group exhibited reduced beta-1 FC relative to the control group. In comparison with the single-seizure group, patients with epilepsy demonstrated elevated delta and theta power and decreased delta FC.</p><p><strong>Significance: </strong>Source-reconstructed data from routine EEGs identified distinct network patterns between non-lesional, IED-free, unmedicated patients who developed epilepsy and those who remained with a single seizure. Increased delta and theta power, along with decreased delta FC, could be a potential epilepsy biomarker. Further, decreases in beta-1 FC after a single seizure may point toward a protective mechanism for patients without further seizures.</p><p><strong>Plain language summary: </strong>After a first seizure, some people develop epilepsy, while others do not. We looked at brain activity in people who had a seizure but showed no clear signs of epilepsy. By comparing those who later developed epilepsy to those who did not, we found that certain slow brain wave patterns (delta and theta) might indicate a higher risk of developing epilepsy. This could help doctors identify high-risk patients sooner.</p>","PeriodicalId":12038,"journal":{"name":"Epilepsia Open","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsia Open","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/epi4.13128","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Diagnosing epilepsy after a first unprovoked seizure in the absence of visible epileptogenic lesions and interictal epileptiform discharges (IED) in the electroencephalogram (EEG) is challenging. Quantitative EEG analysis and functional connectivity (FC) have shown promise in identifying patterns across epilepsy syndromes. Hence, we retrospectively investigated whether there were differences in FC (imaginary part of coherency) and spectral band power in non-lesional, IED-free, unmedicated patients after a first unprovoked seizure in contrast to controls. Further, we investigated if there were differences between the patients who developed epilepsy and those who remained with a single seizure for at least 6 months after the first seizure.

Methods: We used 240 s of resting-state EEG (19 channels) recordings of patients (n = 41) after a first unprovoked seizure and age and sex-matched healthy controls (n = 46). Twenty-one patients developed epilepsy (epilepsy group), while 20 had no further seizures during follow-up (single-seizure group). We computed source-reconstructed power and FC in five frequency bands (1 ± 29 Hz). Group differences were assessed using permutation analysis of linear models.

Results: Patients who developed epilepsy showed increased theta power and FC, increased delta power, and decreased delta FC compared to healthy controls. The single-seizure group exhibited reduced beta-1 FC relative to the control group. In comparison with the single-seizure group, patients with epilepsy demonstrated elevated delta and theta power and decreased delta FC.

Significance: Source-reconstructed data from routine EEGs identified distinct network patterns between non-lesional, IED-free, unmedicated patients who developed epilepsy and those who remained with a single seizure. Increased delta and theta power, along with decreased delta FC, could be a potential epilepsy biomarker. Further, decreases in beta-1 FC after a single seizure may point toward a protective mechanism for patients without further seizures.

Plain language summary: After a first seizure, some people develop epilepsy, while others do not. We looked at brain activity in people who had a seizure but showed no clear signs of epilepsy. By comparing those who later developed epilepsy to those who did not, we found that certain slow brain wave patterns (delta and theta) might indicate a higher risk of developing epilepsy. This could help doctors identify high-risk patients sooner.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Epilepsia Open
Epilepsia Open Medicine-Neurology (clinical)
CiteScore
4.40
自引率
6.70%
发文量
104
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信