Ardan Patwardhan, Richard Henderson, Christopher J Russo
{"title":"Extending the reach of single-particle cryoEM.","authors":"Ardan Patwardhan, Richard Henderson, Christopher J Russo","doi":"10.1016/j.sbi.2025.103005","DOIUrl":null,"url":null,"abstract":"<p><p>Molecular structure determination using electron cryomicroscopy (cryoEM) is poised in early 2025 to surpass X-ray crystallography as the most used method for experimentally determining new structures. But the technique has not reached the physical limits set by radiation damage and the signal-to-noise ratio in individual images of molecules. By examining these limits and comparing the number and resolution of structures determined versus molecular weight, we identify opportunities for extending the application of single-particle cryoEM. This will help guide technology development to continue the exponential growth of structural biology.</p>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":" ","pages":"103005"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.sbi.2025.103005","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular structure determination using electron cryomicroscopy (cryoEM) is poised in early 2025 to surpass X-ray crystallography as the most used method for experimentally determining new structures. But the technique has not reached the physical limits set by radiation damage and the signal-to-noise ratio in individual images of molecules. By examining these limits and comparing the number and resolution of structures determined versus molecular weight, we identify opportunities for extending the application of single-particle cryoEM. This will help guide technology development to continue the exponential growth of structural biology.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation