Studies of the Catalytic Activity of New Nickel(II) Compounds Containing Pyridine Carboxylic Acids Ligands in Oligomerization Processes of Selected Olefins and Cyclohexyl Isocyanide.

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL
Marta Pawlak, Joanna Drzeżdżon, Katarzyna N Jarzembska, Radosław Kamiński, Kacper Pobłocki, Janusz Datta, Dagmara Jacewicz
{"title":"Studies of the Catalytic Activity of New Nickel(II) Compounds Containing Pyridine Carboxylic Acids Ligands in Oligomerization Processes of Selected Olefins and Cyclohexyl Isocyanide.","authors":"Marta Pawlak, Joanna Drzeżdżon, Katarzyna N Jarzembska, Radosław Kamiński, Kacper Pobłocki, Janusz Datta, Dagmara Jacewicz","doi":"10.1002/cphc.202401142","DOIUrl":null,"url":null,"abstract":"<p><p>Catalysts based on nickel(II) ions, due to their high reactivity and easiness of ligand modification, are among the most widely used catalytic systems in the world, with applications in a variety of catalytic processes. Herein, research that leads to the synthesis of new nickel(II) complex compounds containing nicotinic and isonicotinic acid ligands is presented. Their catalytic properties have been studied in oligomerization processes of olefins and isocyanides and the obtained oligomers are subjected to qualitative and quantitative analysis to determine their physicochemical properties. The catalytic activity values achieved in the oligomerization of olefins only in a few cases reach above 100 g mmol<sup>-1</sup> h<sup>-1</sup> bar<sup>-1</sup>. However, the newly obtained catalytic systems show very high (99%) and moderate (36%) efficiency in the oligomerization of cyclohexyl isocyanide. The conducted studies provide knowledge about the influence of modification of the main ligand and reaction conditions on the values of catalytic activity, process yields, as well as physicochemical properties of the obtained oligomers. Furthermore, it is possible to determine which of the processes carried out using the newly synthesized catalytic systems achieve better results and in which process they should be further used and developed.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e2401142"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202401142","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Catalysts based on nickel(II) ions, due to their high reactivity and easiness of ligand modification, are among the most widely used catalytic systems in the world, with applications in a variety of catalytic processes. Herein, research that leads to the synthesis of new nickel(II) complex compounds containing nicotinic and isonicotinic acid ligands is presented. Their catalytic properties have been studied in oligomerization processes of olefins and isocyanides and the obtained oligomers are subjected to qualitative and quantitative analysis to determine their physicochemical properties. The catalytic activity values achieved in the oligomerization of olefins only in a few cases reach above 100 g mmol-1 h-1 bar-1. However, the newly obtained catalytic systems show very high (99%) and moderate (36%) efficiency in the oligomerization of cyclohexyl isocyanide. The conducted studies provide knowledge about the influence of modification of the main ligand and reaction conditions on the values of catalytic activity, process yields, as well as physicochemical properties of the obtained oligomers. Furthermore, it is possible to determine which of the processes carried out using the newly synthesized catalytic systems achieve better results and in which process they should be further used and developed.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信