Devender Jalandhara, Sanjeev Kumar, Sandeep Kumar, Rekha M M, S V Sharma, Sandeep Kaushal
{"title":"BiFeO₃ as a Next-Generation Photocatalyst: Bridging Material Design with Environmental Remediation.","authors":"Devender Jalandhara, Sanjeev Kumar, Sandeep Kumar, Rekha M M, S V Sharma, Sandeep Kaushal","doi":"10.1002/cphc.202401092","DOIUrl":null,"url":null,"abstract":"<p><p>Bismuth ferrite (BiFeO₃) is a multiferroic perovskite material with a narrow band gap (~2.1 eV), demonstrating significant potential as a photocatalyst for environmental remediation and sustainable energy applications. Its photocatalytic capabilities include dye degradation, air purification, wastewater treatment, and hydrogen generation, all driven by its ability to harness visible light. This review critically examines the factors influencing the photocatalytic performance of BiFeO₃ (BFO) and its doped derivatives. Advances in synthesis techniques, such as sol-gel, hydrothermal, and combustion methods, are discussed concerning particle size, crystallinity, and surface modifications. Key strategies, including rare earth element doping, heterostructure formation, and co-catalyst integration, are explored for their role in enhancing charge separation and light absorption, achieving efficiency improvements of over 90 % in some cases. The mechanistic pathways of photocatalysis, with a focus on electron-hole dynamics and radical generation, are analyzed to provide deeper insights into material performance. Despite its potential, challenges such as limited stability and rapid recombination rates persist. This review identifies critical research gaps and proposes directions for optimizing BFO's design and scalability, reinforcing its relevance as a next-generation photocatalyst for addressing global environmental and energy challenges.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202401092"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202401092","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bismuth ferrite (BiFeO₃) is a multiferroic perovskite material with a narrow band gap (~2.1 eV), demonstrating significant potential as a photocatalyst for environmental remediation and sustainable energy applications. Its photocatalytic capabilities include dye degradation, air purification, wastewater treatment, and hydrogen generation, all driven by its ability to harness visible light. This review critically examines the factors influencing the photocatalytic performance of BiFeO₃ (BFO) and its doped derivatives. Advances in synthesis techniques, such as sol-gel, hydrothermal, and combustion methods, are discussed concerning particle size, crystallinity, and surface modifications. Key strategies, including rare earth element doping, heterostructure formation, and co-catalyst integration, are explored for their role in enhancing charge separation and light absorption, achieving efficiency improvements of over 90 % in some cases. The mechanistic pathways of photocatalysis, with a focus on electron-hole dynamics and radical generation, are analyzed to provide deeper insights into material performance. Despite its potential, challenges such as limited stability and rapid recombination rates persist. This review identifies critical research gaps and proposes directions for optimizing BFO's design and scalability, reinforcing its relevance as a next-generation photocatalyst for addressing global environmental and energy challenges.
期刊介绍:
ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.