2-Hydroxyl hispolon reverses high glucose-induced endothelial progenitor cell dysfunction through the PI3K/Akt/eNOS and AMPK/HO-1 pathways.

IF 6.8 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Ta-Jung Wang, Wen-Chi Hou, Bu-Yuan Hsiao, Tsung-Hao Lo, Yu-Ta Chen, Chang-Hang Yang, Yu-Tsung Shih, Ju-Chi Liu
{"title":"2-Hydroxyl hispolon reverses high glucose-induced endothelial progenitor cell dysfunction through the PI3K/Akt/eNOS and AMPK/HO-1 pathways.","authors":"Ta-Jung Wang, Wen-Chi Hou, Bu-Yuan Hsiao, Tsung-Hao Lo, Yu-Ta Chen, Chang-Hang Yang, Yu-Tsung Shih, Ju-Chi Liu","doi":"10.1111/bph.70002","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>In diabetes (DM), elevated blood sugar levels contribute to the overproduction of reactive oxygen species (ROS), leading to endothelial progenitor cell (EPC) dysfunction. This study aimed to determine the potential of 2-hydroxy hispolon (2HH), a derivative of hispolon, to reverse high glucose-induced EPC dysfunction.</p><p><strong>Experimental approach: </strong>Under in vitro high-glucose (HG) conditions, we investigated the effects of 2HH on three types of angiogenic cells: outgrowth endothelial cells (OECs), circulating angiogenic cells (CACs) and endothelial cells (ECs). In vivo, high-fat diet and streptozotocin-induced diabetic mice with hindlimb ischaemia were used to evaluate the effects of 2HH on angiogenesis and CAC mobilisation.</p><p><strong>Key results: </strong>Treatment with 2HH significantly improved the proliferation, migration, tube formation, NO synthesis and ROS reduction in EPCs (OECs and CACs) under HG conditions by activating the AMP-activated protein kinase (AMPK)/haem oxygenase-1 (HO-1) and phosphoinositide 3-kinase (PI3K)/Akt/endothelial NOS (eNOS) signalling pathways but failed to restore EC dysfunction. In the in vivo hindlimb ischaemia model, 2HH administration in DM mice enhanced blood flow recovery in ischaemic hindlimbs, improved limb salvageability, increased the number of circulating CACs and increased capillary density in the ischaemic muscle. Furthermore, 2HH activated the AMPK/HO-1 and PI3K/Akt/eNOS pathways in CACs and ischaemic muscles.</p><p><strong>Conclusion and implications: </strong>2HH treatment effectively reduced oxidative stress and increased NO synthesis, thereby preventing HG-induced EPC dysfunction, primarily through the PI3K/Akt/eNOS and AMPK/HO-1 pathways. These findings offer a promising therapeutic avenue for attenuating susceptibility to critical limb ischaemia in patients with DM.</p>","PeriodicalId":9262,"journal":{"name":"British Journal of Pharmacology","volume":" ","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/bph.70002","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and purpose: In diabetes (DM), elevated blood sugar levels contribute to the overproduction of reactive oxygen species (ROS), leading to endothelial progenitor cell (EPC) dysfunction. This study aimed to determine the potential of 2-hydroxy hispolon (2HH), a derivative of hispolon, to reverse high glucose-induced EPC dysfunction.

Experimental approach: Under in vitro high-glucose (HG) conditions, we investigated the effects of 2HH on three types of angiogenic cells: outgrowth endothelial cells (OECs), circulating angiogenic cells (CACs) and endothelial cells (ECs). In vivo, high-fat diet and streptozotocin-induced diabetic mice with hindlimb ischaemia were used to evaluate the effects of 2HH on angiogenesis and CAC mobilisation.

Key results: Treatment with 2HH significantly improved the proliferation, migration, tube formation, NO synthesis and ROS reduction in EPCs (OECs and CACs) under HG conditions by activating the AMP-activated protein kinase (AMPK)/haem oxygenase-1 (HO-1) and phosphoinositide 3-kinase (PI3K)/Akt/endothelial NOS (eNOS) signalling pathways but failed to restore EC dysfunction. In the in vivo hindlimb ischaemia model, 2HH administration in DM mice enhanced blood flow recovery in ischaemic hindlimbs, improved limb salvageability, increased the number of circulating CACs and increased capillary density in the ischaemic muscle. Furthermore, 2HH activated the AMPK/HO-1 and PI3K/Akt/eNOS pathways in CACs and ischaemic muscles.

Conclusion and implications: 2HH treatment effectively reduced oxidative stress and increased NO synthesis, thereby preventing HG-induced EPC dysfunction, primarily through the PI3K/Akt/eNOS and AMPK/HO-1 pathways. These findings offer a promising therapeutic avenue for attenuating susceptibility to critical limb ischaemia in patients with DM.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.40
自引率
12.30%
发文量
270
审稿时长
2.0 months
期刊介绍: The British Journal of Pharmacology (BJP) is a biomedical science journal offering comprehensive international coverage of experimental and translational pharmacology. It publishes original research, authoritative reviews, mini reviews, systematic reviews, meta-analyses, databases, letters to the Editor, and commentaries. Review articles, databases, systematic reviews, and meta-analyses are typically commissioned, but unsolicited contributions are also considered, either as standalone papers or part of themed issues. In addition to basic science research, BJP features translational pharmacology research, including proof-of-concept and early mechanistic studies in humans. While it generally does not publish first-in-man phase I studies or phase IIb, III, or IV studies, exceptions may be made under certain circumstances, particularly if results are combined with preclinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信