Daniel Yan Zheng Lim, Yu Bin Tan, Jonas Ren Yi Ho, Sushmitha Carkarine, Tian Wei Valerie Chew, Yuhe Ke, Jen Hong Tan, Ting Fang Tan, Kabilan Elangovan, Le Quan, Li Yuan Jin, Jasmine Chiat Ling Ong, Gerald Gui Ren Sng, Joshua Yi Min Tung, Chee Kiat Tan, Damien Tan
{"title":"Vision-language large learning model, GPT4V, accurately classifies the Boston Bowel Preparation Scale score.","authors":"Daniel Yan Zheng Lim, Yu Bin Tan, Jonas Ren Yi Ho, Sushmitha Carkarine, Tian Wei Valerie Chew, Yuhe Ke, Jen Hong Tan, Ting Fang Tan, Kabilan Elangovan, Le Quan, Li Yuan Jin, Jasmine Chiat Ling Ong, Gerald Gui Ren Sng, Joshua Yi Min Tung, Chee Kiat Tan, Damien Tan","doi":"10.1136/bmjgast-2024-001496","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Large learning models (LLMs) such as GPT are advanced artificial intelligence (AI) models. Originally developed for natural language processing, they have been adapted for multi-modal tasks with vision-language input. One clinically relevant task is scoring the Boston Bowel Preparation Scale (BBPS). While traditional AI techniques use large amounts of data for training, we hypothesise that vision-language LLM can perform this task with fewer examples.</p><p><strong>Methods: </strong>We used the GPT4V vision-language LLM developed by OpenAI, via the OpenAI application programming interface. A standardised prompt instructed the model to grade BBPS with contextual references extracted from the original paper describing the BBPS by Lai <i>et al</i> (GIE 2009). Performance was tested on the HyperKvasir dataset, an open dataset for automated BBPS grading.</p><p><strong>Results: </strong>Of 1794 images, GPT4V returned valid results for 1772 (98%). It had an accuracy of 0.84 for two-class classification (BBPS 0-1 vs 2-3) and 0.74 for four-class classification (BBPS 0, 1, 2, 3). Macro-averaged F1 scores were 0.81 and 0.63, respectively. Qualitatively, most errors arose from misclassification of BBPS 1 as 2. These results compare favourably with current methods using large amounts of training data, which achieve an accuracy in the range of 0.8-0.9.</p><p><strong>Conclusion: </strong>This study provides proof-of-concept that a vision-language LLM is able to perform BBPS classification accurately, without large training datasets. This represents a paradigm shift in AI classification methods in medicine, where many diseases lack sufficient data to train traditional AI models. An LLM with appropriate examples may be used in such cases.</p>","PeriodicalId":9235,"journal":{"name":"BMJ Open Gastroenterology","volume":"12 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881179/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Open Gastroenterology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/bmjgast-2024-001496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Large learning models (LLMs) such as GPT are advanced artificial intelligence (AI) models. Originally developed for natural language processing, they have been adapted for multi-modal tasks with vision-language input. One clinically relevant task is scoring the Boston Bowel Preparation Scale (BBPS). While traditional AI techniques use large amounts of data for training, we hypothesise that vision-language LLM can perform this task with fewer examples.
Methods: We used the GPT4V vision-language LLM developed by OpenAI, via the OpenAI application programming interface. A standardised prompt instructed the model to grade BBPS with contextual references extracted from the original paper describing the BBPS by Lai et al (GIE 2009). Performance was tested on the HyperKvasir dataset, an open dataset for automated BBPS grading.
Results: Of 1794 images, GPT4V returned valid results for 1772 (98%). It had an accuracy of 0.84 for two-class classification (BBPS 0-1 vs 2-3) and 0.74 for four-class classification (BBPS 0, 1, 2, 3). Macro-averaged F1 scores were 0.81 and 0.63, respectively. Qualitatively, most errors arose from misclassification of BBPS 1 as 2. These results compare favourably with current methods using large amounts of training data, which achieve an accuracy in the range of 0.8-0.9.
Conclusion: This study provides proof-of-concept that a vision-language LLM is able to perform BBPS classification accurately, without large training datasets. This represents a paradigm shift in AI classification methods in medicine, where many diseases lack sufficient data to train traditional AI models. An LLM with appropriate examples may be used in such cases.
期刊介绍:
BMJ Open Gastroenterology is an online-only, peer-reviewed, open access gastroenterology journal, dedicated to publishing high-quality medical research from all disciplines and therapeutic areas of gastroenterology. It is the open access companion journal of Gut and is co-owned by the British Society of Gastroenterology. The journal publishes all research study types, from study protocols to phase I trials to meta-analyses, including small or specialist studies. Publishing procedures are built around continuous publication, publishing research online as soon as the article is ready.