Vision-language large learning model, GPT4V, accurately classifies the Boston Bowel Preparation Scale score.

IF 3.3 Q2 GASTROENTEROLOGY & HEPATOLOGY
Daniel Yan Zheng Lim, Yu Bin Tan, Jonas Ren Yi Ho, Sushmitha Carkarine, Tian Wei Valerie Chew, Yuhe Ke, Jen Hong Tan, Ting Fang Tan, Kabilan Elangovan, Le Quan, Li Yuan Jin, Jasmine Chiat Ling Ong, Gerald Gui Ren Sng, Joshua Yi Min Tung, Chee Kiat Tan, Damien Tan
{"title":"Vision-language large learning model, GPT4V, accurately classifies the Boston Bowel Preparation Scale score.","authors":"Daniel Yan Zheng Lim, Yu Bin Tan, Jonas Ren Yi Ho, Sushmitha Carkarine, Tian Wei Valerie Chew, Yuhe Ke, Jen Hong Tan, Ting Fang Tan, Kabilan Elangovan, Le Quan, Li Yuan Jin, Jasmine Chiat Ling Ong, Gerald Gui Ren Sng, Joshua Yi Min Tung, Chee Kiat Tan, Damien Tan","doi":"10.1136/bmjgast-2024-001496","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Large learning models (LLMs) such as GPT are advanced artificial intelligence (AI) models. Originally developed for natural language processing, they have been adapted for multi-modal tasks with vision-language input. One clinically relevant task is scoring the Boston Bowel Preparation Scale (BBPS). While traditional AI techniques use large amounts of data for training, we hypothesise that vision-language LLM can perform this task with fewer examples.</p><p><strong>Methods: </strong>We used the GPT4V vision-language LLM developed by OpenAI, via the OpenAI application programming interface. A standardised prompt instructed the model to grade BBPS with contextual references extracted from the original paper describing the BBPS by Lai <i>et al</i> (GIE 2009). Performance was tested on the HyperKvasir dataset, an open dataset for automated BBPS grading.</p><p><strong>Results: </strong>Of 1794 images, GPT4V returned valid results for 1772 (98%). It had an accuracy of 0.84 for two-class classification (BBPS 0-1 vs 2-3) and 0.74 for four-class classification (BBPS 0, 1, 2, 3). Macro-averaged F1 scores were 0.81 and 0.63, respectively. Qualitatively, most errors arose from misclassification of BBPS 1 as 2. These results compare favourably with current methods using large amounts of training data, which achieve an accuracy in the range of 0.8-0.9.</p><p><strong>Conclusion: </strong>This study provides proof-of-concept that a vision-language LLM is able to perform BBPS classification accurately, without large training datasets. This represents a paradigm shift in AI classification methods in medicine, where many diseases lack sufficient data to train traditional AI models. An LLM with appropriate examples may be used in such cases.</p>","PeriodicalId":9235,"journal":{"name":"BMJ Open Gastroenterology","volume":"12 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881179/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Open Gastroenterology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/bmjgast-2024-001496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Large learning models (LLMs) such as GPT are advanced artificial intelligence (AI) models. Originally developed for natural language processing, they have been adapted for multi-modal tasks with vision-language input. One clinically relevant task is scoring the Boston Bowel Preparation Scale (BBPS). While traditional AI techniques use large amounts of data for training, we hypothesise that vision-language LLM can perform this task with fewer examples.

Methods: We used the GPT4V vision-language LLM developed by OpenAI, via the OpenAI application programming interface. A standardised prompt instructed the model to grade BBPS with contextual references extracted from the original paper describing the BBPS by Lai et al (GIE 2009). Performance was tested on the HyperKvasir dataset, an open dataset for automated BBPS grading.

Results: Of 1794 images, GPT4V returned valid results for 1772 (98%). It had an accuracy of 0.84 for two-class classification (BBPS 0-1 vs 2-3) and 0.74 for four-class classification (BBPS 0, 1, 2, 3). Macro-averaged F1 scores were 0.81 and 0.63, respectively. Qualitatively, most errors arose from misclassification of BBPS 1 as 2. These results compare favourably with current methods using large amounts of training data, which achieve an accuracy in the range of 0.8-0.9.

Conclusion: This study provides proof-of-concept that a vision-language LLM is able to perform BBPS classification accurately, without large training datasets. This represents a paradigm shift in AI classification methods in medicine, where many diseases lack sufficient data to train traditional AI models. An LLM with appropriate examples may be used in such cases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMJ Open Gastroenterology
BMJ Open Gastroenterology GASTROENTEROLOGY & HEPATOLOGY-
CiteScore
5.90
自引率
3.20%
发文量
68
审稿时长
2 weeks
期刊介绍: BMJ Open Gastroenterology is an online-only, peer-reviewed, open access gastroenterology journal, dedicated to publishing high-quality medical research from all disciplines and therapeutic areas of gastroenterology. It is the open access companion journal of Gut and is co-owned by the British Society of Gastroenterology. The journal publishes all research study types, from study protocols to phase I trials to meta-analyses, including small or specialist studies. Publishing procedures are built around continuous publication, publishing research online as soon as the article is ready.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信