Dual-approach co-expression analysis framework (D-CAF) enables identification of novel circadian co-regulation from multi-omic timeseries data.

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS
Joshua Chuah, Carmalena V Cordi, Juergen Hahn, Jennifer M Hurley
{"title":"Dual-approach co-expression analysis framework (D-CAF) enables identification of novel circadian co-regulation from multi-omic timeseries data.","authors":"Joshua Chuah, Carmalena V Cordi, Juergen Hahn, Jennifer M Hurley","doi":"10.1186/s12859-025-06089-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The circadian clock is a central driver of many biological and behavioral processes, regulating the levels of many genes and proteins, termed clock controlled genes and proteins (CCGs/CCPs), to impart biological timing at the molecular level. While transcriptomic and proteomic data has been analyzed to find potential CCGs and CCPs, multi-omic modeling of circadian data, which has the potential to enhance the understanding of circadian control of biological timing, remains relatively rare due to several methodological hurdles. To address this gap, a dual-approach co-expression analysis framework (D-CAF) was created to perform co-expression analysis that is robust to Gaussian noise perturbations on time-series measurements of both transcripts and proteins.</p><p><strong>Results: </strong>Applying this D-CAF framework to previously gathered transcriptomic and proteomic data from mouse macrophages gathered over circadian time, we identified small, highly significant clusters of oscillating transcripts and proteins in the unweighted similarity matrices and larger, less significant clusters of of oscillating transcripts and proteins using the weighted similarity network. Functional enrichment analysis of these clusters identified novel immunological response pathways that appear to be under circadian control.</p><p><strong>Conclusions: </strong>Overall, our findings suggest that D-CAF is a tool that can be used by the circadian community to integrate multi-omic circadian data to improve our understanding of the mechanisms of circadian regulation of molecular processes.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"72"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881278/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-025-06089-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The circadian clock is a central driver of many biological and behavioral processes, regulating the levels of many genes and proteins, termed clock controlled genes and proteins (CCGs/CCPs), to impart biological timing at the molecular level. While transcriptomic and proteomic data has been analyzed to find potential CCGs and CCPs, multi-omic modeling of circadian data, which has the potential to enhance the understanding of circadian control of biological timing, remains relatively rare due to several methodological hurdles. To address this gap, a dual-approach co-expression analysis framework (D-CAF) was created to perform co-expression analysis that is robust to Gaussian noise perturbations on time-series measurements of both transcripts and proteins.

Results: Applying this D-CAF framework to previously gathered transcriptomic and proteomic data from mouse macrophages gathered over circadian time, we identified small, highly significant clusters of oscillating transcripts and proteins in the unweighted similarity matrices and larger, less significant clusters of of oscillating transcripts and proteins using the weighted similarity network. Functional enrichment analysis of these clusters identified novel immunological response pathways that appear to be under circadian control.

Conclusions: Overall, our findings suggest that D-CAF is a tool that can be used by the circadian community to integrate multi-omic circadian data to improve our understanding of the mechanisms of circadian regulation of molecular processes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信