{"title":"Bulky substrates of isoleucine 2-epimerase: α-Neopentylglycine and NV-5138.","authors":"Noa T Sorbara, Amanda K A Black, Stephen L Bearne","doi":"10.1016/j.bmcl.2025.130160","DOIUrl":null,"url":null,"abstract":"<p><p>Isoleucine 2-epimerase from Lactobacillus buchneri (LbIleE) catalyzes the pyridoxal 5'-phosphate-dependent, reversible, racemization or epimerization of nonpolar amino acids at the C-2 position. The integral role of the enzyme in the biosynthesis of branched-chain d-amino acids makes it a potential target for the development of antimicrobial agents. Probing the hydrophobic active-site pocket with a series of alkyl boronic acids, we show that the hydrophobic pocket accommodates the neopentyl group with enhanced binding affinity relative to the sec-butyl group. Subsequently, we show that LbIleE catalyzes the racemization of l- and d-α-neopentylglycine, exhibiting binding affinities for these substrates 6- and 24-fold greater than those for l-Ile and d-allo-Ile, but with catalytic efficiencies (k<sub>cat</sub>/K<sub>m</sub>) reduced 46- and 27-fold, respectively. NV-5138 is a ligand of the leucine-binding site of Sestrin2, which activates the mechanistic target of rapamycin complex1 (mTORC1) and is structurally similar to α-neopentylglycine. Our demonstration that LbIleE catalyzes the racemization of l-NV-5138 (k<sub>cat</sub>/K<sub>m</sub> = 2.2 ± 0.2 s<sup>-1</sup> M<sup>-1</sup>), along with the fact that L. buchneri can be present in the human gut microbiome, suggests that formation of d-NV-5138 could occur in humans when l-NV-5138 is used as a pharmacological intervention for depression.</p>","PeriodicalId":256,"journal":{"name":"Bioorganic & Medicinal Chemistry Letters","volume":" ","pages":"130160"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry Letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.bmcl.2025.130160","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Isoleucine 2-epimerase from Lactobacillus buchneri (LbIleE) catalyzes the pyridoxal 5'-phosphate-dependent, reversible, racemization or epimerization of nonpolar amino acids at the C-2 position. The integral role of the enzyme in the biosynthesis of branched-chain d-amino acids makes it a potential target for the development of antimicrobial agents. Probing the hydrophobic active-site pocket with a series of alkyl boronic acids, we show that the hydrophobic pocket accommodates the neopentyl group with enhanced binding affinity relative to the sec-butyl group. Subsequently, we show that LbIleE catalyzes the racemization of l- and d-α-neopentylglycine, exhibiting binding affinities for these substrates 6- and 24-fold greater than those for l-Ile and d-allo-Ile, but with catalytic efficiencies (kcat/Km) reduced 46- and 27-fold, respectively. NV-5138 is a ligand of the leucine-binding site of Sestrin2, which activates the mechanistic target of rapamycin complex1 (mTORC1) and is structurally similar to α-neopentylglycine. Our demonstration that LbIleE catalyzes the racemization of l-NV-5138 (kcat/Km = 2.2 ± 0.2 s-1 M-1), along with the fact that L. buchneri can be present in the human gut microbiome, suggests that formation of d-NV-5138 could occur in humans when l-NV-5138 is used as a pharmacological intervention for depression.
期刊介绍:
Bioorganic & Medicinal Chemistry Letters presents preliminary experimental or theoretical research results of outstanding significance and timeliness on all aspects of science at the interface of chemistry and biology and on major advances in drug design and development. The journal publishes articles in the form of communications reporting experimental or theoretical results of special interest, and strives to provide maximum dissemination to a large, international audience.