Yunhui Xia, Lei Li, Dongmei Li, Yanmei Liu, Lanxiang Hao
{"title":"Serum Metabolomic Analysis of Healthy and Central Precocious Puberty Girls.","authors":"Yunhui Xia, Lei Li, Dongmei Li, Yanmei Liu, Lanxiang Hao","doi":"10.1111/cen.15226","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The incidence of precocious puberty (PP) has been on the rise in recent years. Based on different control mechanisms, childhood PP is divided into central precocious puberty (CPP) and peripheral precocious puberty (PPP). CPP accounts for 80% of all PP cases. Metabolomics is considered a link between genomics and phenotypes, providing a direct reflection of intricate biological traits. However, studies on serum metabolomic changes in CPP are very limited.</p><p><strong>Methods: </strong>In this study, non-targeted metabolomics analysis of serum from healthy controls and CPP groups was performed. Serum samples were collected from a total of 55 individuals, including 30 girls diagnosed with CPP who had not yet received treatment and did not have any other comorbidities, and 25 healthy girls serving as controls who underwent physical examinations.</p><p><strong>Results: </strong>A total of 1107 differential metabolites were identified, including 681 upregulated and 426 downregulated ones. The main pathway involved was citrate cycle (TCA cycle), primary bile acid biosynthesis, arginine biosynthesis, purine metabolism, caffeine metabolism, alanine, aspartate and glutamate metabolism, valine, leucine and isoleucine biosynthesis, beta-alanine metabolism, taurine and hypotaurine metabolism, inositol phosphate metabolism, sphingolipid metabolism, pyruvate metabolism, propanoate metabolism, butanoate metabolism, C5-branched dibasic acid metabolism, sulphur metabolism, carbon metabolism and biosynthesis of amino acids.</p><p><strong>Conclusion: </strong>A total of 14 metabolites were identified through non-targeted metabolomics combined with four major metabolic network analyses. The above metabolites form a metabolic network that may serve as a novel marker and potential combined therapeutic target for the diagnosis of CPP.</p>","PeriodicalId":10346,"journal":{"name":"Clinical Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/cen.15226","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The incidence of precocious puberty (PP) has been on the rise in recent years. Based on different control mechanisms, childhood PP is divided into central precocious puberty (CPP) and peripheral precocious puberty (PPP). CPP accounts for 80% of all PP cases. Metabolomics is considered a link between genomics and phenotypes, providing a direct reflection of intricate biological traits. However, studies on serum metabolomic changes in CPP are very limited.
Methods: In this study, non-targeted metabolomics analysis of serum from healthy controls and CPP groups was performed. Serum samples were collected from a total of 55 individuals, including 30 girls diagnosed with CPP who had not yet received treatment and did not have any other comorbidities, and 25 healthy girls serving as controls who underwent physical examinations.
Results: A total of 1107 differential metabolites were identified, including 681 upregulated and 426 downregulated ones. The main pathway involved was citrate cycle (TCA cycle), primary bile acid biosynthesis, arginine biosynthesis, purine metabolism, caffeine metabolism, alanine, aspartate and glutamate metabolism, valine, leucine and isoleucine biosynthesis, beta-alanine metabolism, taurine and hypotaurine metabolism, inositol phosphate metabolism, sphingolipid metabolism, pyruvate metabolism, propanoate metabolism, butanoate metabolism, C5-branched dibasic acid metabolism, sulphur metabolism, carbon metabolism and biosynthesis of amino acids.
Conclusion: A total of 14 metabolites were identified through non-targeted metabolomics combined with four major metabolic network analyses. The above metabolites form a metabolic network that may serve as a novel marker and potential combined therapeutic target for the diagnosis of CPP.
期刊介绍:
Clinical Endocrinology publishes papers and reviews which focus on the clinical aspects of endocrinology, including the clinical application of molecular endocrinology. It does not publish papers relating directly to diabetes care and clinical management. It features reviews, original papers, commentaries, correspondence and Clinical Questions. Clinical Endocrinology is essential reading not only for those engaged in endocrinological research but also for those involved primarily in clinical practice.