Minfang Song, Shuai Ma, Gong Wang, Yukun Wang, Zhenzhen Yang, Bin Xie, Tongkun Guo, Xingxu Huang, Liye Zhang
{"title":"Benchmarking copy number aberrations inference tools using single-cell multi-omics datasets.","authors":"Minfang Song, Shuai Ma, Gong Wang, Yukun Wang, Zhenzhen Yang, Bin Xie, Tongkun Guo, Xingxu Huang, Liye Zhang","doi":"10.1093/bib/bbaf076","DOIUrl":null,"url":null,"abstract":"<p><p>Copy number alterations (CNAs) are an important type of genomic variation which play a crucial role in the initiation and progression of cancer. With the explosion of single-cell RNA sequencing (scRNA-seq), several computational methods have been developed to infer CNAs from scRNA-seq studies. However, to date, no independent studies have comprehensively benchmarked their performance. Herein, we evaluated five state-of-the-art methods based on their performance in tumor versus normal cell classification; CNAs profile accuracy, tumor subclone inference, and aneuploidy identification in non-malignant cells. Our results showed that Numbat outperformed others across most evaluation criteria, while CopyKAT excelled in scenarios when expression matrix alone was used as input. In specific tasks, SCEVAN showed the best performance in clonal breakpoint detection and Numbat showed high sensitivity in copy number neutral LOH (cnLOH) detection. Additionally, we investigated how referencing settings, inclusion of tumor microenvironment cells, tumor type, and tumor purity impact the performance of these tools. This study provides a valuable guideline for researchers in selecting the appropriate methods for their datasets.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 2","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879432/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf076","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Copy number alterations (CNAs) are an important type of genomic variation which play a crucial role in the initiation and progression of cancer. With the explosion of single-cell RNA sequencing (scRNA-seq), several computational methods have been developed to infer CNAs from scRNA-seq studies. However, to date, no independent studies have comprehensively benchmarked their performance. Herein, we evaluated five state-of-the-art methods based on their performance in tumor versus normal cell classification; CNAs profile accuracy, tumor subclone inference, and aneuploidy identification in non-malignant cells. Our results showed that Numbat outperformed others across most evaluation criteria, while CopyKAT excelled in scenarios when expression matrix alone was used as input. In specific tasks, SCEVAN showed the best performance in clonal breakpoint detection and Numbat showed high sensitivity in copy number neutral LOH (cnLOH) detection. Additionally, we investigated how referencing settings, inclusion of tumor microenvironment cells, tumor type, and tumor purity impact the performance of these tools. This study provides a valuable guideline for researchers in selecting the appropriate methods for their datasets.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.