Arctic tropospheric ozone seasonality, depletion, and oil field influence.

IF 3.3 3区 化学 Q2 CHEMISTRY, PHYSICAL
Evelyn M Widmaier, Andrew R Jensen, Kerri A Pratt
{"title":"Arctic tropospheric ozone seasonality, depletion, and oil field influence.","authors":"Evelyn M Widmaier, Andrew R Jensen, Kerri A Pratt","doi":"10.1039/d4fd00166d","DOIUrl":null,"url":null,"abstract":"<p><p>Near-surface tropospheric ozone depletion events (ODEs) occur in the polar regions during springtime when ozone reacts with bromine radicals, driving tropospheric ozone mole ratios below 15 ppb (part-per-billion; nmol mol<sup>-1</sup>). ODEs alter atmospheric oxidative capacity by influencing halogen radical recycling mechanisms and the photochemical production of hydroxyl radicals (˙OH). Herein, we examined five years of continuous ozone measurements at two coastal Arctic sites: Utqiaġvik, Alaska and ∼260 km southeast at Oliktok Point, within the North Slope of Alaska oil fields. These data informed seasonal ozone trends, springtime ozone depletion, and the influence of oil field combustion emissions. Ozone depletion occurred frequently during spring: 35% of the time at Utqiaġvik and 40% at Oliktok Point. ODEs often occurred concurrently at both sites (40-92% of observed ODEs per year), supporting spatially widespread ozone depletion. Observed ozone depletion timescales are consistent with transport of ozone-depleted air masses, suggesting regional active bromine chemistry. Local-scale ozone depletion affecting individual sites occurred less frequently. Ozone depletion typically coincided with calm winds and had no clear dependence on temperature. Consistently lower ozone mole ratios year-round at Oliktok Point, compared to Utqiaġvik, indicate local-scale ozone titration within the stable boundary layer by nitric oxide (NO˙) combustion emissions in the Arctic oil fields. Oxidation of combustion-derived volatile organic compounds in the presence of NO<sub><i>x</i></sub> also likely contributes to ozone formation downwind, for example at Utqiaġvik, pointing to complex local and regional impacts of combustion emissions as Arctic anthropogenic activity increases.</p>","PeriodicalId":76,"journal":{"name":"Faraday Discussions","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Faraday Discussions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4fd00166d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Near-surface tropospheric ozone depletion events (ODEs) occur in the polar regions during springtime when ozone reacts with bromine radicals, driving tropospheric ozone mole ratios below 15 ppb (part-per-billion; nmol mol-1). ODEs alter atmospheric oxidative capacity by influencing halogen radical recycling mechanisms and the photochemical production of hydroxyl radicals (˙OH). Herein, we examined five years of continuous ozone measurements at two coastal Arctic sites: Utqiaġvik, Alaska and ∼260 km southeast at Oliktok Point, within the North Slope of Alaska oil fields. These data informed seasonal ozone trends, springtime ozone depletion, and the influence of oil field combustion emissions. Ozone depletion occurred frequently during spring: 35% of the time at Utqiaġvik and 40% at Oliktok Point. ODEs often occurred concurrently at both sites (40-92% of observed ODEs per year), supporting spatially widespread ozone depletion. Observed ozone depletion timescales are consistent with transport of ozone-depleted air masses, suggesting regional active bromine chemistry. Local-scale ozone depletion affecting individual sites occurred less frequently. Ozone depletion typically coincided with calm winds and had no clear dependence on temperature. Consistently lower ozone mole ratios year-round at Oliktok Point, compared to Utqiaġvik, indicate local-scale ozone titration within the stable boundary layer by nitric oxide (NO˙) combustion emissions in the Arctic oil fields. Oxidation of combustion-derived volatile organic compounds in the presence of NOx also likely contributes to ozone formation downwind, for example at Utqiaġvik, pointing to complex local and regional impacts of combustion emissions as Arctic anthropogenic activity increases.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Faraday Discussions
Faraday Discussions 化学-物理化学
自引率
0.00%
发文量
259
期刊介绍: Discussion summary and research papers from discussion meetings that focus on rapidly developing areas of physical chemistry and its interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信