iScore: A ML-Based Scoring Function for De Novo Drug Discovery.

IF 5.6 2区 化学 Q1 CHEMISTRY, MEDICINAL
Sayyed Jalil Mahdizadeh, Leif A Eriksson
{"title":"iScore: A ML-Based Scoring Function for De Novo Drug Discovery.","authors":"Sayyed Jalil Mahdizadeh, Leif A Eriksson","doi":"10.1021/acs.jcim.4c02192","DOIUrl":null,"url":null,"abstract":"<p><p>In the quest for accelerating de novo drug discovery, the development of efficient and accurate scoring functions represents a fundamental challenge. This study introduces iScore, a novel machine learning (ML)-based scoring function designed to predict the binding affinity of protein-ligand complexes with remarkable speed and precision. Uniquely, iScore circumvents the conventional reliance on explicit knowledge of protein-ligand interactions and a full picture of atomic contacts, instead leveraging a set of ligand and binding pocket descriptors to directly evaluate binding affinity. This approach enables skipping the inefficient and slow conformational sampling stage, thereby enabling the rapid screening of ultrahuge molecular libraries, a crucial advancement given the practically infinite dimensions of chemical space. iScore was rigorously trained and validated using the PDBbind 2020 refined set, CASF 2016, CSAR NRC-HiQ Set1/2, DUD-E, and target fishing data sets, employing three distinct ML methodologies: Deep neural network (iScore-DNN), random forest (iScore-RF), and eXtreme gradient boosting (iScore-XGB). A hybrid model, iScore-Hybrid, was subsequently developed to incorporate the strengths of these individual base learners. The hybrid model demonstrated a Pearson correlation coefficient (<i>R</i>) of 0.78 and a root-mean-square error (RMSE) of 1.23 in cross-validation, outperforming the individual base learners and establishing new benchmarks for scoring power (<i>R</i> = 0.814, RMSE = 1.34), ranking power (ρ = 0.705), and screening power (success rate at top 10% = 73.7%). Moreover, iScore-Hybrid demonstrated great performance in the target fishing benchmarking study.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"2759-2772"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11938276/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02192","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the quest for accelerating de novo drug discovery, the development of efficient and accurate scoring functions represents a fundamental challenge. This study introduces iScore, a novel machine learning (ML)-based scoring function designed to predict the binding affinity of protein-ligand complexes with remarkable speed and precision. Uniquely, iScore circumvents the conventional reliance on explicit knowledge of protein-ligand interactions and a full picture of atomic contacts, instead leveraging a set of ligand and binding pocket descriptors to directly evaluate binding affinity. This approach enables skipping the inefficient and slow conformational sampling stage, thereby enabling the rapid screening of ultrahuge molecular libraries, a crucial advancement given the practically infinite dimensions of chemical space. iScore was rigorously trained and validated using the PDBbind 2020 refined set, CASF 2016, CSAR NRC-HiQ Set1/2, DUD-E, and target fishing data sets, employing three distinct ML methodologies: Deep neural network (iScore-DNN), random forest (iScore-RF), and eXtreme gradient boosting (iScore-XGB). A hybrid model, iScore-Hybrid, was subsequently developed to incorporate the strengths of these individual base learners. The hybrid model demonstrated a Pearson correlation coefficient (R) of 0.78 and a root-mean-square error (RMSE) of 1.23 in cross-validation, outperforming the individual base learners and establishing new benchmarks for scoring power (R = 0.814, RMSE = 1.34), ranking power (ρ = 0.705), and screening power (success rate at top 10% = 73.7%). Moreover, iScore-Hybrid demonstrated great performance in the target fishing benchmarking study.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.80
自引率
10.70%
发文量
529
审稿时长
1.4 months
期刊介绍: The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery. Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field. As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信