Deep-Subwavelength Focusing and Reflectionless Negative Refraction in Visible-Light Hyperbolic Metasurface

IF 8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kobi-Yaakov Cohen, Shimon Dolev, Guy Bartal
{"title":"Deep-Subwavelength Focusing and Reflectionless Negative Refraction in Visible-Light Hyperbolic Metasurface","authors":"Kobi-Yaakov Cohen,&nbsp;Shimon Dolev,&nbsp;Guy Bartal","doi":"10.1002/adom.202402591","DOIUrl":null,"url":null,"abstract":"<p>Hyperbolic metasurfaces (HMSs) are artificially-engineered interfaces, exhibiting high anisotropy manifested as hyperbolic dispersion. Their ability to support extremely large momenta with negative diffraction and refraction places them as promising platforms for on-chip super-resolution and enhanced light-matter interaction. While the hyperbolic nature of these structures is experimentally demonstrated, only a limited number of studies have concentrated on their super-resolution capabilities, which are never obtained at visible-frequency for fully harnessing their immense resolution potential. Here, a near-field investigation of visible-frequency HMSs is presented, exploiting their super-resolution capabilities to their maximum potential. The impulse response of waves propagating across HMSs is measured and demonstrates deep sub-wavelength anomalous focusing and on-chip reflectionless negative refraction at the interface of parabolic and hyperbolic media, independent of incident angle. The approach lays the foundation for sub-wavelength imaging in 2D space for the advancement of imaging and wave compression devices, leveraging the capabilities of HMSs.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 7","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202402591","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202402591","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperbolic metasurfaces (HMSs) are artificially-engineered interfaces, exhibiting high anisotropy manifested as hyperbolic dispersion. Their ability to support extremely large momenta with negative diffraction and refraction places them as promising platforms for on-chip super-resolution and enhanced light-matter interaction. While the hyperbolic nature of these structures is experimentally demonstrated, only a limited number of studies have concentrated on their super-resolution capabilities, which are never obtained at visible-frequency for fully harnessing their immense resolution potential. Here, a near-field investigation of visible-frequency HMSs is presented, exploiting their super-resolution capabilities to their maximum potential. The impulse response of waves propagating across HMSs is measured and demonstrates deep sub-wavelength anomalous focusing and on-chip reflectionless negative refraction at the interface of parabolic and hyperbolic media, independent of incident angle. The approach lays the foundation for sub-wavelength imaging in 2D space for the advancement of imaging and wave compression devices, leveraging the capabilities of HMSs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信