Hao Dai, Yilin Shi, Zezhao Ju, Kunhao Lei, Ye Luo, Jieren Song, Ruizhe Liu, Qikai Chen, Mengxue Qi, Yaoguang Ma, Lan Li, Hongtao Lin
{"title":"Chalcogenide Visible Transmissive Metasurface Optics","authors":"Hao Dai, Yilin Shi, Zezhao Ju, Kunhao Lei, Ye Luo, Jieren Song, Ruizhe Liu, Qikai Chen, Mengxue Qi, Yaoguang Ma, Lan Li, Hongtao Lin","doi":"10.1002/adom.202402359","DOIUrl":null,"url":null,"abstract":"<p>The development of innovative dielectric materials is crucial for advancing metasurface optics. Chalcogenides are well-known for their unique optical properties and broadband high transmission from visible to infrared, which promises to be an emerging material platform for metasurface optics. However, the lack of chalcogenide materials in visible transmissive metasurfaces remains. In this work, the designs and experimental works of the first chalcogenide visible transmissive metasurface optics based on the chalcogenide material Ge<sub>23</sub>Sb<sub>7</sub>S<sub>70</sub> (GSS) platform are presented. Taking advantage of its high refractive index and low optical loss in visible, chalcogenide metalens, focused meta-vortex, meta-holographic devices, and computational visible spectrometers are designed and fabricated with a commendable performance. This work establishes the groundwork for realizing diverse functionalities and broader integration of chalcogenide metasurfaces at visible wavelengths.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 7","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202402359","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of innovative dielectric materials is crucial for advancing metasurface optics. Chalcogenides are well-known for their unique optical properties and broadband high transmission from visible to infrared, which promises to be an emerging material platform for metasurface optics. However, the lack of chalcogenide materials in visible transmissive metasurfaces remains. In this work, the designs and experimental works of the first chalcogenide visible transmissive metasurface optics based on the chalcogenide material Ge23Sb7S70 (GSS) platform are presented. Taking advantage of its high refractive index and low optical loss in visible, chalcogenide metalens, focused meta-vortex, meta-holographic devices, and computational visible spectrometers are designed and fabricated with a commendable performance. This work establishes the groundwork for realizing diverse functionalities and broader integration of chalcogenide metasurfaces at visible wavelengths.
期刊介绍:
Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.