KIDBA-Net: A Multi-Feature Fusion Brain Tumor Segmentation Network Utilizing Kernel Inception Depthwise Convolution and Bi-Cross Attention

IF 3 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Jie Min, Tongyuan Huang, Boxiong Huang, Chuanxin Hu, Zhixing Zhang
{"title":"KIDBA-Net: A Multi-Feature Fusion Brain Tumor Segmentation Network Utilizing Kernel Inception Depthwise Convolution and Bi-Cross Attention","authors":"Jie Min,&nbsp;Tongyuan Huang,&nbsp;Boxiong Huang,&nbsp;Chuanxin Hu,&nbsp;Zhixing Zhang","doi":"10.1002/ima.70055","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Automatic brain tumor segmentation technology plays a crucial role in tumor diagnosis, particularly in the precise delineation of tumor subregions. It can assist doctors in accurately assessing the type and location of brain tumors, potentially saving patients' lives. However, the highly variable size and shape of brain tumors, along with their similarity to healthy tissue, pose significant challenges in the segmentation of multi-label brain tumor subregions. This paper proposes a network model, KIDBA-Net, based on an encoder-decoder architecture, aimed at solving the issue of pixel-level classification errors in multi-label tumor subregions. The proposed Kernel Inception Depthwise Block (KIDB) employs multi-kernel depthwise convolution to extract multi-scale features in parallel, accurately capturing the feature differences between tumor types to mitigate misclassification. To ensure the network focuses more on the lesion areas and excludes the interference of irrelevant tissues, this paper adopts Bi-Cross Attention as a skip connection hub to bridge the semantic gap between layers. Additionally, the Dynamic Feature Reconstruction Block (DFRB) exploits the complementary advantages of convolution and dynamic upsampling operators, effectively aiding the model in generating high-resolution prediction maps during the decoding phase. The proposed model surpasses other state-of-the-art brain tumor segmentation methods on the BraTS2018 and BraTS2019 datasets, particularly in the segmentation accuracy of smaller and highly overlapping tumor core (TC) and enhanced tumor (ET), achieving DSC scores of 87.8%, 82.0%, and 90.2%, 88.7%, respectively; Hausdorff distances of 2.8, 2.7 mm, and 2.7, 2.0 mm.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"35 2","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.70055","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic brain tumor segmentation technology plays a crucial role in tumor diagnosis, particularly in the precise delineation of tumor subregions. It can assist doctors in accurately assessing the type and location of brain tumors, potentially saving patients' lives. However, the highly variable size and shape of brain tumors, along with their similarity to healthy tissue, pose significant challenges in the segmentation of multi-label brain tumor subregions. This paper proposes a network model, KIDBA-Net, based on an encoder-decoder architecture, aimed at solving the issue of pixel-level classification errors in multi-label tumor subregions. The proposed Kernel Inception Depthwise Block (KIDB) employs multi-kernel depthwise convolution to extract multi-scale features in parallel, accurately capturing the feature differences between tumor types to mitigate misclassification. To ensure the network focuses more on the lesion areas and excludes the interference of irrelevant tissues, this paper adopts Bi-Cross Attention as a skip connection hub to bridge the semantic gap between layers. Additionally, the Dynamic Feature Reconstruction Block (DFRB) exploits the complementary advantages of convolution and dynamic upsampling operators, effectively aiding the model in generating high-resolution prediction maps during the decoding phase. The proposed model surpasses other state-of-the-art brain tumor segmentation methods on the BraTS2018 and BraTS2019 datasets, particularly in the segmentation accuracy of smaller and highly overlapping tumor core (TC) and enhanced tumor (ET), achieving DSC scores of 87.8%, 82.0%, and 90.2%, 88.7%, respectively; Hausdorff distances of 2.8, 2.7 mm, and 2.7, 2.0 mm.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Imaging Systems and Technology
International Journal of Imaging Systems and Technology 工程技术-成像科学与照相技术
CiteScore
6.90
自引率
6.10%
发文量
138
审稿时长
3 months
期刊介绍: The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals. IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging. The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered. The scope of the journal includes, but is not limited to, the following in the context of biomedical research: Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.; Neuromodulation and brain stimulation techniques such as TMS and tDCS; Software and hardware for imaging, especially related to human and animal health; Image segmentation in normal and clinical populations; Pattern analysis and classification using machine learning techniques; Computational modeling and analysis; Brain connectivity and connectomics; Systems-level characterization of brain function; Neural networks and neurorobotics; Computer vision, based on human/animal physiology; Brain-computer interface (BCI) technology; Big data, databasing and data mining.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信