A Multi-cluster Security Framework for Healthcare IoT: The Synergy of Redundant Byzantine Fault Tolerance with Extensions and Coati-Based Network

IF 2.5 4区 计算机科学 Q3 TELECOMMUNICATIONS
Rohit Beniwal, Vinod Kumar, Vishal Sharma
{"title":"A Multi-cluster Security Framework for Healthcare IoT: The Synergy of Redundant Byzantine Fault Tolerance with Extensions and Coati-Based Network","authors":"Rohit Beniwal,&nbsp;Vinod Kumar,&nbsp;Vishal Sharma","doi":"10.1002/ett.70098","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The rapid integration of Internet of Things (IoT) devices into healthcare systems has revolutionized medical care delivery but has also introduced significant security challenges. Ensuring secure communication, privacy preservation, and system resilience in resource-constrained healthcare IoT networks is critical, given the sensitivity of the data involved and the potential for malicious attacks. This research addresses these concerns by proposing a Multi-cluster Security Framework for Healthcare IoT, designed to overcome existing limitations in security and scalability. The framework combines Redundant Byzantine Fault Tolerance with Extensions (RB-BFT X) and CoatiNet, leveraging lightweight cryptographic techniques, role-based access control, and dynamic routing algorithms. RB-BFT X enhances intra-cluster security through fault tolerance and anomaly detection, while CoatiNet optimizes inter-cluster communication using adaptive routing and self-recovery mechanisms inspired by coatis' natural behavior. Experimental results demonstrate the framework's efficacy, achieving a high detection rate of 98.20%, minimal latency, and stable throughput under various adversarial conditions. Compared to existing methods, it outperforms in maintaining network lifetime and reducing false positives, even with increased malicious activity. These findings have significant implications for enhancing the security and efficiency of healthcare IoT networks. The proposed methodology ensures robust data protection, efficient communication, and adaptability to evolving threats, contributing to safer and more reliable healthcare systems.</p>\n </div>","PeriodicalId":23282,"journal":{"name":"Transactions on Emerging Telecommunications Technologies","volume":"36 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Emerging Telecommunications Technologies","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ett.70098","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid integration of Internet of Things (IoT) devices into healthcare systems has revolutionized medical care delivery but has also introduced significant security challenges. Ensuring secure communication, privacy preservation, and system resilience in resource-constrained healthcare IoT networks is critical, given the sensitivity of the data involved and the potential for malicious attacks. This research addresses these concerns by proposing a Multi-cluster Security Framework for Healthcare IoT, designed to overcome existing limitations in security and scalability. The framework combines Redundant Byzantine Fault Tolerance with Extensions (RB-BFT X) and CoatiNet, leveraging lightweight cryptographic techniques, role-based access control, and dynamic routing algorithms. RB-BFT X enhances intra-cluster security through fault tolerance and anomaly detection, while CoatiNet optimizes inter-cluster communication using adaptive routing and self-recovery mechanisms inspired by coatis' natural behavior. Experimental results demonstrate the framework's efficacy, achieving a high detection rate of 98.20%, minimal latency, and stable throughput under various adversarial conditions. Compared to existing methods, it outperforms in maintaining network lifetime and reducing false positives, even with increased malicious activity. These findings have significant implications for enhancing the security and efficiency of healthcare IoT networks. The proposed methodology ensures robust data protection, efficient communication, and adaptability to evolving threats, contributing to safer and more reliable healthcare systems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.90
自引率
13.90%
发文量
249
期刊介绍: ransactions on Emerging Telecommunications Technologies (ETT), formerly known as European Transactions on Telecommunications (ETT), has the following aims: - to attract cutting-edge publications from leading researchers and research groups around the world - to become a highly cited source of timely research findings in emerging fields of telecommunications - to limit revision and publication cycles to a few months and thus significantly increase attractiveness to publish - to become the leading journal for publishing the latest developments in telecommunications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信