Machine Learning–Assisted Risk Assessment of Pitting Corrosion Susceptibility of AA1050 in Ethanol-Containing Fuels

IF 1.6 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
Lukas C. Jarren, Eugen Gazenbiller, Visheet Arya, Rüdiger Reitz, Matthias Oechsner, Christian Feiler, Mikhail L. Zheludkevich, Daniel Höche
{"title":"Machine Learning–Assisted Risk Assessment of Pitting Corrosion Susceptibility of AA1050 in Ethanol-Containing Fuels","authors":"Lukas C. Jarren,&nbsp;Eugen Gazenbiller,&nbsp;Visheet Arya,&nbsp;Rüdiger Reitz,&nbsp;Matthias Oechsner,&nbsp;Christian Feiler,&nbsp;Mikhail L. Zheludkevich,&nbsp;Daniel Höche","doi":"10.1002/maco.202414598","DOIUrl":null,"url":null,"abstract":"<p>The ability to assess the risk of corrosion of metallic structures in particular environments holds considerable significance in the field of automotive industry. In recent years, machine learning has evolved into a crucial tool to evaluate the complex and multidimensional corrosion phenomena. In this paper, the special case of non-aqueous alcoholate pitting corrosion of AA1050 in ethanol-blended fuels with water and chloride contamination is examined via supervised machine learning techniques in order to distinguish between safe and unsafe conditions. The data space was created by conducting dedicated experiments with varying ethanol–fuel–water ratios, temperatures, and surface preparations. The classifier's performance rating of 0.87 (balanced accuracy) indicates an outstanding predictive ability and highlights the model's usefulness as decision support for subsequent experiments.</p>","PeriodicalId":18225,"journal":{"name":"Materials and Corrosion-werkstoffe Und Korrosion","volume":"76 3","pages":"398-407"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/maco.202414598","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Corrosion-werkstoffe Und Korrosion","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/maco.202414598","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The ability to assess the risk of corrosion of metallic structures in particular environments holds considerable significance in the field of automotive industry. In recent years, machine learning has evolved into a crucial tool to evaluate the complex and multidimensional corrosion phenomena. In this paper, the special case of non-aqueous alcoholate pitting corrosion of AA1050 in ethanol-blended fuels with water and chloride contamination is examined via supervised machine learning techniques in order to distinguish between safe and unsafe conditions. The data space was created by conducting dedicated experiments with varying ethanol–fuel–water ratios, temperatures, and surface preparations. The classifier's performance rating of 0.87 (balanced accuracy) indicates an outstanding predictive ability and highlights the model's usefulness as decision support for subsequent experiments.

Abstract Image

机器学习辅助的AA1050在含乙醇燃料中点蚀敏感性风险评估
评估金属结构在特定环境中的腐蚀风险的能力在汽车工业领域具有相当重要的意义。近年来,机器学习已经发展成为评估复杂和多维腐蚀现象的重要工具。本文通过监督式机器学习技术研究了AA1050在含有水和氯化物污染的乙醇混合燃料中的非水酒精点蚀的特殊情况,以区分安全和不安全的条件。数据空间是通过在不同的乙醇-燃料-水比、温度和表面制备条件下进行专门的实验而创建的。该分类器的性能评级为0.87(平衡精度),表明该模型具有出色的预测能力,并突出了该模型作为后续实验决策支持的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials and Corrosion-werkstoffe Und Korrosion
Materials and Corrosion-werkstoffe Und Korrosion 工程技术-材料科学:综合
CiteScore
3.70
自引率
11.10%
发文量
199
审稿时长
1.4 months
期刊介绍: Materials and Corrosion is the leading European journal in its field, providing rapid and comprehensive coverage of the subject and specifically highlighting the increasing importance of corrosion research and prevention. Several sections exclusive to Materials and Corrosion bring you closer to the current events in the field of corrosion research and add to the impact this journal can make on your work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信