{"title":"An Enhanced Encryption Scheme for IoT-Based Wireless Sensor Network Using DNA Enclosed Fully Homomorphic Approach","authors":"Alka Prasad Sawlikar, Devashri Shrikant Raich, Bireshwar Swapan Ganguly, Lowlesh Nandkishor Yadav","doi":"10.1002/ett.70075","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The rapid proliferation of Internet of Things (IoT) devices has revolutionized wireless sensor networks (WSNs), enabling real-time monitoring across various applications. However, this growth introduces critical security challenges, including data breaches, time consumption, and memory overhead, which limit the efficiency and scalability of the existing encryption models. To address these issues, this paper proposes a novel DNA-enclosed Fully Homomorphic Encryption (HD-FHE) scheme integrated with improved elliptic curve cryptography (IECC). The proposed approach leverages dual-layer encryption by combining the strengths of deoxyribonucleic acid (DNA) computing and homomorphic encryption to secure data processing without decryption. The IECC further enhances key generation efficiency and reduces resource consumption. The experimental results demonstrate significant improvements in encryption (1.675 ms for 3 KB) and decryption (1.582 ms for 3 KB) times, alongside high throughput (2.275 ms for 7 KB), outperforming the existing models. These results highlight the robustness of the proposed method in minimizing vulnerabilities to Chosen Plaintext Attack (CPA) and Chosen Ciphertext Attack (CCA) while ensuring scalability in dynamic IoT environments. This work provides a significant contribution to IoT-based WSN security by achieving a balance between performance and protection, paving the way for secure and efficient data transmission in next-generation networks.</p>\n </div>","PeriodicalId":23282,"journal":{"name":"Transactions on Emerging Telecommunications Technologies","volume":"36 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Emerging Telecommunications Technologies","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ett.70075","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid proliferation of Internet of Things (IoT) devices has revolutionized wireless sensor networks (WSNs), enabling real-time monitoring across various applications. However, this growth introduces critical security challenges, including data breaches, time consumption, and memory overhead, which limit the efficiency and scalability of the existing encryption models. To address these issues, this paper proposes a novel DNA-enclosed Fully Homomorphic Encryption (HD-FHE) scheme integrated with improved elliptic curve cryptography (IECC). The proposed approach leverages dual-layer encryption by combining the strengths of deoxyribonucleic acid (DNA) computing and homomorphic encryption to secure data processing without decryption. The IECC further enhances key generation efficiency and reduces resource consumption. The experimental results demonstrate significant improvements in encryption (1.675 ms for 3 KB) and decryption (1.582 ms for 3 KB) times, alongside high throughput (2.275 ms for 7 KB), outperforming the existing models. These results highlight the robustness of the proposed method in minimizing vulnerabilities to Chosen Plaintext Attack (CPA) and Chosen Ciphertext Attack (CCA) while ensuring scalability in dynamic IoT environments. This work provides a significant contribution to IoT-based WSN security by achieving a balance between performance and protection, paving the way for secure and efficient data transmission in next-generation networks.
期刊介绍:
ransactions on Emerging Telecommunications Technologies (ETT), formerly known as European Transactions on Telecommunications (ETT), has the following aims:
- to attract cutting-edge publications from leading researchers and research groups around the world
- to become a highly cited source of timely research findings in emerging fields of telecommunications
- to limit revision and publication cycles to a few months and thus significantly increase attractiveness to publish
- to become the leading journal for publishing the latest developments in telecommunications