SH3GL1-activated FTH1 inhibits ferroptosis and confers doxorubicin resistance in diffuse large B-cell lymphoma

IF 7.9 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Zi-Wen Duan, Wei-Ting Wang, Yan Wang, Rong Wang, Wei Hua, Chun-Yu Shang, Rui Gao, Hao-Rui Shen, Yue Li, Jia-Zhu Wu, Hua Yin, Li Wang, Jian-Yong Li, Wei Xu, Jin-Hua Liang
{"title":"SH3GL1-activated FTH1 inhibits ferroptosis and confers doxorubicin resistance in diffuse large B-cell lymphoma","authors":"Zi-Wen Duan,&nbsp;Wei-Ting Wang,&nbsp;Yan Wang,&nbsp;Rong Wang,&nbsp;Wei Hua,&nbsp;Chun-Yu Shang,&nbsp;Rui Gao,&nbsp;Hao-Rui Shen,&nbsp;Yue Li,&nbsp;Jia-Zhu Wu,&nbsp;Hua Yin,&nbsp;Li Wang,&nbsp;Jian-Yong Li,&nbsp;Wei Xu,&nbsp;Jin-Hua Liang","doi":"10.1002/ctm2.70246","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Diffuse large B-cell lymphoma (DLBCL) is predominant subtype of non-Hodgkin lymphoma and can be effectively treated. Nevertheless, a subset of patients experiences refractory or relapsed disease, highlighting the need for new therapeutic strategies.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Depmap database based on CRISPR/Cas9 knock out analysis was employed to identify the essential gene SH3GL1, which encodes endophilin A2, as crucial for the proliferation and survival of DLBCL cells. Immunohistochemistry (IHC) staining was performed on the 126 paraffin-embedded clinical DLBCL samples to investigate the association between SH3GL1 expression levels and the prognosis. To investigate the specific mechanism modulated by SH3GL1 in the progression of DLBCL, an integrative approach was employed. This approach combined high-throughput sequencing technologies, such as Deep-DIA and LC-MS, with functional validation techniques, including CRISPR/Cas9 gene editing, xenograft models, and molecular pathway analyses.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Our study found that high expression levels of SH3GL1 correlate with poor prognosis in a cohort of 126 newly diagnosed DLBCL patients, underscoring its significance in disease progression. Mechanistically, we found that SH3GL1 deficiency triggers ferritin heavy chain 1 (FTH1)-mediated ferroptosis, specifically ferritinophagy-induced ferroptosis, in DLBCL cells. Additionally, high expression of SH3GL1 suppresses doxorubicin-induced ferroptosis. Cancer cells' resistance to conventional therapies is associated with increased sensitivity to ferroptosis.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>These findings emphasise SH3GL1 as a promising prognostic biomarker and a potential therapeutic target in DLBCL, offering new avenues for treatment strategies aimed at overcoming drug resistance and improving patients' outcomes.</p>\n </section>\n \n <section>\n \n <h3> Key points</h3>\n \n <div>\n <ul>\n \n <li>Elevated SH3GL1 expression in DLBCL patients was associated with a negative prognosis.</li>\n \n <li>SH3GL1 plays a crucial role in promoting DLBCL cell survival through the regulation of FTH1-mediated ferroptosis and doxorubicin resistance.</li>\n </ul>\n </div>\n </section>\n </div>","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"15 3","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctm2.70246","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ctm2.70246","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Diffuse large B-cell lymphoma (DLBCL) is predominant subtype of non-Hodgkin lymphoma and can be effectively treated. Nevertheless, a subset of patients experiences refractory or relapsed disease, highlighting the need for new therapeutic strategies.

Methods

Depmap database based on CRISPR/Cas9 knock out analysis was employed to identify the essential gene SH3GL1, which encodes endophilin A2, as crucial for the proliferation and survival of DLBCL cells. Immunohistochemistry (IHC) staining was performed on the 126 paraffin-embedded clinical DLBCL samples to investigate the association between SH3GL1 expression levels and the prognosis. To investigate the specific mechanism modulated by SH3GL1 in the progression of DLBCL, an integrative approach was employed. This approach combined high-throughput sequencing technologies, such as Deep-DIA and LC-MS, with functional validation techniques, including CRISPR/Cas9 gene editing, xenograft models, and molecular pathway analyses.

Results

Our study found that high expression levels of SH3GL1 correlate with poor prognosis in a cohort of 126 newly diagnosed DLBCL patients, underscoring its significance in disease progression. Mechanistically, we found that SH3GL1 deficiency triggers ferritin heavy chain 1 (FTH1)-mediated ferroptosis, specifically ferritinophagy-induced ferroptosis, in DLBCL cells. Additionally, high expression of SH3GL1 suppresses doxorubicin-induced ferroptosis. Cancer cells' resistance to conventional therapies is associated with increased sensitivity to ferroptosis.

Conclusions

These findings emphasise SH3GL1 as a promising prognostic biomarker and a potential therapeutic target in DLBCL, offering new avenues for treatment strategies aimed at overcoming drug resistance and improving patients' outcomes.

Key points

  • Elevated SH3GL1 expression in DLBCL patients was associated with a negative prognosis.
  • SH3GL1 plays a crucial role in promoting DLBCL cell survival through the regulation of FTH1-mediated ferroptosis and doxorubicin resistance.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.90
自引率
1.90%
发文量
450
审稿时长
4 weeks
期刊介绍: Clinical and Translational Medicine (CTM) is an international, peer-reviewed, open-access journal dedicated to accelerating the translation of preclinical research into clinical applications and fostering communication between basic and clinical scientists. It highlights the clinical potential and application of various fields including biotechnologies, biomaterials, bioengineering, biomarkers, molecular medicine, omics science, bioinformatics, immunology, molecular imaging, drug discovery, regulation, and health policy. With a focus on the bench-to-bedside approach, CTM prioritizes studies and clinical observations that generate hypotheses relevant to patients and diseases, guiding investigations in cellular and molecular medicine. The journal encourages submissions from clinicians, researchers, policymakers, and industry professionals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信