Overwintering Fish Community in Ice-Covered Environments in Hokkaido, Japan, Inferred From Environmental DNA

Q1 Agricultural and Biological Sciences
Tatsuya Kawakami, Makoto Ozaki, Aya Yamazaki, Daiki Nomura, Akihide Kasai
{"title":"Overwintering Fish Community in Ice-Covered Environments in Hokkaido, Japan, Inferred From Environmental DNA","authors":"Tatsuya Kawakami,&nbsp;Makoto Ozaki,&nbsp;Aya Yamazaki,&nbsp;Daiki Nomura,&nbsp;Akihide Kasai","doi":"10.1002/edn3.70068","DOIUrl":null,"url":null,"abstract":"<p>The overwintering ecology of fish in the seasonal ice zones (SIZs) remains largely unexplored owing to methodological limitations. Environmental DNA (eDNA) can reveal the distribution and diversity of fish species in various aquatic environments, thereby offering a possible solution to the methodological limitations of SIZ studies. Therefore, we aimed to detect the overwintering fish community in the ice-covered Saroma-ko Lagoon, located on the Okhotsk Sea coast of Hokkaido, and its inflow, using eDNA metabarcoding. eDNA extracted from under-ice seawater collected from the lagoon yielded 28 fish taxa, predominantly <i>Clupea pallasii</i> based on the relative DNA read abundance. Dissimilarity analysis suggested short-term temporal variations in eDNA composition in under-ice seawater, even at the same site. Nineteen fish taxa, predominantly <i>Tribolodon brandtii</i> and <i>T. hakonensis</i>, were detected in the eDNA extracted from under-ice river water. The high dissimilarity between eDNA results from under-ice seawater and river water suggested segregation of the overwintering community between the lagoon and river. Fish eDNA detected in meltwater from sea ice was assigned to five taxa, suggesting the entrainment of particulate matter containing fish eDNA during ice growth. The true species richness estimated based on eDNA results and discrepancies with historical reports suggest that sampling efforts need to be optimized for ice-covered environments to promote more comprehensive species detection. This study demonstrated the usefulness of using fish eDNA metabarcoding to study the ecology of overwintering fish under ice. Clarifying eDNA shedding patterns, persistence, and dispersal in under-ice environments would improve the reliability of this technique and expand its use in SIZs.</p>","PeriodicalId":52828,"journal":{"name":"Environmental DNA","volume":"7 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/edn3.70068","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental DNA","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/edn3.70068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

The overwintering ecology of fish in the seasonal ice zones (SIZs) remains largely unexplored owing to methodological limitations. Environmental DNA (eDNA) can reveal the distribution and diversity of fish species in various aquatic environments, thereby offering a possible solution to the methodological limitations of SIZ studies. Therefore, we aimed to detect the overwintering fish community in the ice-covered Saroma-ko Lagoon, located on the Okhotsk Sea coast of Hokkaido, and its inflow, using eDNA metabarcoding. eDNA extracted from under-ice seawater collected from the lagoon yielded 28 fish taxa, predominantly Clupea pallasii based on the relative DNA read abundance. Dissimilarity analysis suggested short-term temporal variations in eDNA composition in under-ice seawater, even at the same site. Nineteen fish taxa, predominantly Tribolodon brandtii and T. hakonensis, were detected in the eDNA extracted from under-ice river water. The high dissimilarity between eDNA results from under-ice seawater and river water suggested segregation of the overwintering community between the lagoon and river. Fish eDNA detected in meltwater from sea ice was assigned to five taxa, suggesting the entrainment of particulate matter containing fish eDNA during ice growth. The true species richness estimated based on eDNA results and discrepancies with historical reports suggest that sampling efforts need to be optimized for ice-covered environments to promote more comprehensive species detection. This study demonstrated the usefulness of using fish eDNA metabarcoding to study the ecology of overwintering fish under ice. Clarifying eDNA shedding patterns, persistence, and dispersal in under-ice environments would improve the reliability of this technique and expand its use in SIZs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental DNA
Environmental DNA Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
11.00
自引率
0.00%
发文量
99
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信