Solid-Phase Synthesis of Peptide Hydrazides: Moving Toward Green Chemistry

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Maria Leko, Polina Filippova, Karin Rustler, Thomas Bruckdorfer, Sergey Burov
{"title":"Solid-Phase Synthesis of Peptide Hydrazides: Moving Toward Green Chemistry","authors":"Maria Leko,&nbsp;Polina Filippova,&nbsp;Karin Rustler,&nbsp;Thomas Bruckdorfer,&nbsp;Sergey Burov","doi":"10.1002/psc.70010","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Peptide hydrazides are widely applied as precursors of peptide thioesters, valuable building blocks for the synthesis of proteins by native chemical ligation. In addition, they can be applied for the selective modification of cargo or carrier molecules using hydrazone ligation technique. In this work, we describe key aspects of solid phase synthesis of peptide hydrazides on hydrazine 2CT and hydrazone resin. Special attention is paid to the optimization of synthetic procedures using “preferred” and “usable” organic solvents. Thus, optimization of 2-CTC resin loading with Fmoc-hydrazine permits to reduce reagents consumption and avoid DMF and DCM application. The final products can be released from the polymer support with simultaneous BOC removal with 5% HCl (aq) in acetone. Although this protocol demands subsequent peptide deprotection to remove other protecting groups, it benefits of significantly reduced TFA consumption. Because of improved stability in acidic conditions and the possibility of selective Mtt removal and peptide cleavage in green solvents, hydrazone resin can be considered as a useful alternative for peptide hydrazides synthesis. Obtained results can simplify the synthesis of peptide building blocks for native chemical ligation using CMR-free reagents and solvents.</p>\n </div>","PeriodicalId":16946,"journal":{"name":"Journal of Peptide Science","volume":"31 4","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Peptide Science","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/psc.70010","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Peptide hydrazides are widely applied as precursors of peptide thioesters, valuable building blocks for the synthesis of proteins by native chemical ligation. In addition, they can be applied for the selective modification of cargo or carrier molecules using hydrazone ligation technique. In this work, we describe key aspects of solid phase synthesis of peptide hydrazides on hydrazine 2CT and hydrazone resin. Special attention is paid to the optimization of synthetic procedures using “preferred” and “usable” organic solvents. Thus, optimization of 2-CTC resin loading with Fmoc-hydrazine permits to reduce reagents consumption and avoid DMF and DCM application. The final products can be released from the polymer support with simultaneous BOC removal with 5% HCl (aq) in acetone. Although this protocol demands subsequent peptide deprotection to remove other protecting groups, it benefits of significantly reduced TFA consumption. Because of improved stability in acidic conditions and the possibility of selective Mtt removal and peptide cleavage in green solvents, hydrazone resin can be considered as a useful alternative for peptide hydrazides synthesis. Obtained results can simplify the synthesis of peptide building blocks for native chemical ligation using CMR-free reagents and solvents.

Abstract Image

肽酰肼的固相合成:走向绿色化学
肽酰肼被广泛用作肽硫酯的前体,是天然化学连接合成蛋白质的重要组成部分。此外,它们还可以应用于利用腙连接技术对货物或载体分子进行选择性修饰。在这项工作中,我们描述了在肼2CT和腙树脂上固相合成肽酰肼的关键方面。特别注意使用“首选”和“可用”有机溶剂的合成程序的优化。因此,优化负载fmoc -肼的2-CTC树脂可以减少试剂消耗,避免DMF和DCM的应用。最终产物可以从聚合物载体中释放出来,同时在丙酮中用5%的HCl (aq)去除BOC。尽管该方案要求随后的肽去保护以去除其他保护基团,但它可以显著减少TFA的消耗。由于在酸性条件下稳定性的提高以及在绿色溶剂中选择性去除Mtt和多肽裂解的可能性,腙树脂可以被认为是合成多肽酰肼的有用替代品。所得结果可以简化使用无cmr试剂和溶剂进行天然化学连接的肽构建块的合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Peptide Science
Journal of Peptide Science 生物-分析化学
CiteScore
3.40
自引率
4.80%
发文量
83
审稿时长
1.7 months
期刊介绍: The official Journal of the European Peptide Society EPS The Journal of Peptide Science is a cooperative venture of John Wiley & Sons, Ltd and the European Peptide Society, undertaken for the advancement of international peptide science by the publication of original research results and reviews. The Journal of Peptide Science publishes three types of articles: Research Articles, Rapid Communications and Reviews. The scope of the Journal embraces the whole range of peptide chemistry and biology: the isolation, characterisation, synthesis properties (chemical, physical, conformational, pharmacological, endocrine and immunological) and applications of natural peptides; studies of their analogues, including peptidomimetics; peptide antibiotics and other peptide-derived complex natural products; peptide and peptide-related drug design and development; peptide materials and nanomaterials science; combinatorial peptide research; the chemical synthesis of proteins; and methodological advances in all these areas. The spectrum of interests is well illustrated by the published proceedings of the regular international Symposia of the European, American, Japanese, Australian, Chinese and Indian Peptide Societies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信