{"title":"A Multiscale Principal Component Analysis Approach to Physical Layer Secret Key Generation in Indoor Environments","authors":"Megha Santhosh Kumar, Ramanathan Ramachandran","doi":"10.1002/ett.70100","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>With the rise of Industry 5.0, smart cities, and the ever-expanding use of general wireless networks, ensuring seamless communication and robust data security has become a critical challenge. Generating secure secret keys (SKG) through wireless channels is particularly complex in environments where noise and wideband conditions introduce discrepancies and autocorrelation in channel measurements. These issues compromise cross-correlation and randomness, leading to substantial bit disagreements, distinct keys at the transceivers, and unsuccessful SKG. This research begins by outlining the mathematical model of the signal preprocessing technique called multiscale principal component analysis (MSPCA). Subsequently, it explores the performance of key generation when employing the proposed scheme. A holistic system-level framework for creating initial shared keys is presented, encompassing quantization methods such as uniform multilevel quantization (UMQ) and encoding methods such as 3-bit Gray encoding. Monte Carlo-based simulations in an indoor scenario evaluate system efficacy using metrics like Pearson correlation coefficient, bit disagreement rate (BDR), randomness, and complexity. The proposed scheme achieves a BDR lower than 0.01, a correlation coefficient greater than 0.95, and passes all National Institute of Standards and Technology (NIST) randomness tests, establishing it as a viable solution for securing wireless systems. In the context of Industry 5.0 and smart city infrastructures, where seamless communication and robust data security are paramount, the proposed SKG framework offers significant potential. With its ability to ensure secure and reliable communication, this scheme can underpin the development of advanced wireless systems that cater to the high demands of interconnected ecosystems, enhancing resilience and trust in critical applications.</p>\n </div>","PeriodicalId":23282,"journal":{"name":"Transactions on Emerging Telecommunications Technologies","volume":"36 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Emerging Telecommunications Technologies","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ett.70100","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
With the rise of Industry 5.0, smart cities, and the ever-expanding use of general wireless networks, ensuring seamless communication and robust data security has become a critical challenge. Generating secure secret keys (SKG) through wireless channels is particularly complex in environments where noise and wideband conditions introduce discrepancies and autocorrelation in channel measurements. These issues compromise cross-correlation and randomness, leading to substantial bit disagreements, distinct keys at the transceivers, and unsuccessful SKG. This research begins by outlining the mathematical model of the signal preprocessing technique called multiscale principal component analysis (MSPCA). Subsequently, it explores the performance of key generation when employing the proposed scheme. A holistic system-level framework for creating initial shared keys is presented, encompassing quantization methods such as uniform multilevel quantization (UMQ) and encoding methods such as 3-bit Gray encoding. Monte Carlo-based simulations in an indoor scenario evaluate system efficacy using metrics like Pearson correlation coefficient, bit disagreement rate (BDR), randomness, and complexity. The proposed scheme achieves a BDR lower than 0.01, a correlation coefficient greater than 0.95, and passes all National Institute of Standards and Technology (NIST) randomness tests, establishing it as a viable solution for securing wireless systems. In the context of Industry 5.0 and smart city infrastructures, where seamless communication and robust data security are paramount, the proposed SKG framework offers significant potential. With its ability to ensure secure and reliable communication, this scheme can underpin the development of advanced wireless systems that cater to the high demands of interconnected ecosystems, enhancing resilience and trust in critical applications.
期刊介绍:
ransactions on Emerging Telecommunications Technologies (ETT), formerly known as European Transactions on Telecommunications (ETT), has the following aims:
- to attract cutting-edge publications from leading researchers and research groups around the world
- to become a highly cited source of timely research findings in emerging fields of telecommunications
- to limit revision and publication cycles to a few months and thus significantly increase attractiveness to publish
- to become the leading journal for publishing the latest developments in telecommunications